Remove Data Scientist Remove Deep Learning Remove ML
article thumbnail

What Comes After HDF5? Seeking a Data Storage Format for Deep Learning

KDnuggets

In this article we are discussing that HDF5 is one of the most popular and reliable formats for non-tabular, numerical data. But this format is not optimized for deep learning work. This article suggests what kind of ML native data format should be to truly serve the needs of modern data scientists.

article thumbnail

A Comprehensive Guide on Hyperparameter Tuning and its Techniques

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Image designed by the author – Shanthababu Introduction Every ML Engineer and Data Scientist must understand the significance of “Hyperparameter Tuning (HPs-T)” while selecting your right machine/deep learning model and improving the performance of the model(s).

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

10 AI Conferences in the USA (2025): Connect with Top AI and Data Minds

Data Science Dojo

If you want to stay ahead in the world of big data, AI, and data-driven decision-making, Big Data & AI World 2025 is the perfect event to explore the latest innovations, strategies, and real-world applications. This event offers cutting-edge discussions, hands-on workshops, and deep dives into AI advancements.

Big Data 294
article thumbnail

Remote Data Science Jobs: 5 High-Demand Roles for Career Growth

Data Science Dojo

For data scientists, this shift has opened up a global market of remote data science jobs, with top employers now prioritizing skills that allow remote professionals to thrive. Here’s everything you need to know to land a remote data science job, from advanced role insights to tips on making yourself an unbeatable candidate.

article thumbnail

Journeying into the realms of ML engineers and data scientists

Dataconomy

Machine learning engineer vs data scientist: two distinct roles with overlapping expertise, each essential in unlocking the power of data-driven insights. As businesses strive to stay competitive and make data-driven decisions, the roles of machine learning engineers and data scientists have gained prominence.

article thumbnail

Revolutionize your ML workflow: 5 drag and drop tools for streamlining your pipeline

Data Science Dojo

Drag and drop tools have revolutionized the way we approach machine learning (ML) workflows. Gone are the days of manually coding every step of the process – now, with drag-and-drop interfaces, streamlining your ML pipeline has become more accessible and efficient than ever before. H2O.ai H2O.ai

ML 195
article thumbnail

Accelerate your ML lifecycle using the new and improved Amazon SageMaker Python SDK – Part 1: ModelTrainer

AWS Machine Learning Blog

The new SDK is designed with a tiered user experience in mind, where the new lower-level SDK ( SageMaker Core ) provides access to full breadth of SageMaker features and configurations, allowing for greater flexibility and control for ML engineers. This is usually achieved by providing the right set of parameters when using an Estimator.

ML 103