2022

article thumbnail

Data Science Minimum: 10 Essential Skills You Need to Know to Start Doing Data Science

KDnuggets

Data science is ever-evolving, so mastering its foundational technical and soft skills will help you be successful in a career as a Data Scientist, as well as pursue advance concepts, such as deep learning and artificial intelligence.

article thumbnail

Is Quantum Computing the Future of Artificial Intelligence?

Analytics Vidhya

This article was published as a part of the Data Science Blogathon. Source: Forbes.com Introduction It is not hidden from the audience that quantum computing is the future of data processing. Tech giants like IBM, Google, and Microsoft are all aggressively pursuing quantum computing technology for a good reason. The massive speedups and power savings of quantum […].

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

More Data Science Cheatsheets

KDnuggets

It's time again to look at some data science cheatsheets. Here you can find a short selection of such resources which can cater to different existing levels of knowledge and breadth of topics of interest.

article thumbnail

Top 38 Python Libraries for Data Science, Data Visualization & Machine Learning

KDnuggets

This article compiles the 38 top Python libraries for data science, data visualization & machine learning, as best determined by KDnuggets staff.

article thumbnail

Apache Airflow®: The Ultimate Guide to DAG Writing

Speaker: Tamara Fingerlin, Developer Advocate

In this new webinar, Tamara Fingerlin, Developer Advocate, will walk you through many Airflow best practices and advanced features that can help you make your pipelines more manageable, adaptive, and robust. She'll focus on how to write best-in-class Airflow DAGs using the latest Airflow features like dynamic task mapping and data-driven scheduling!

article thumbnail

What Can AI-Powered RPA and IA Mean For Businesses?

KDnuggets

RPA and IA have stunned the business world by availing impressive, intelligent automation capabilities for scales of businesses across industries, which we'll know in this blog.

AI 400
article thumbnail

How To Overcome The Fear of Math and Learn Math For Data Science

KDnuggets

Many aspiring Data Scientists, especially when self-learning, fail to learn the necessary math foundations. These recommendations for learning approaches along with references to valuable resources can help you overcome a personal sense of not being "the math type" or belief that you "always failed in math.".

More Trending

article thumbnail

How I Got 4 Data Science Offers and Doubled My Income 2 Months After Being Laid Off

KDnuggets

In this blog, I shared my story on getting 4 data science job offers including Airbnb, Lyft and Twitter after being laid off. Any data scientist who was laid off due to the pandemic or who is actively looking for a data science position can find something here to which they can relate.

article thumbnail

How Much Math Do You Need in Data Science?

KDnuggets

There exist so many great computational tools available for Data Scientists to perform their work. However, mathematical skills are still essential in data science and machine learning because these tools will only be black-boxes for which you will not be able to ask core analytical questions without a theoretical foundation.

article thumbnail

Introduction to Pandas for Data Science

KDnuggets

The Pandas library is core to any Data Science work in Python. This introduction will walk you through the basics of data manipulating, and features many of Pandas important features.

article thumbnail

If I Had To Start Learning Data Science Again, How Would I Do It?

KDnuggets

While different ways to learn Data Science for the first time exist, the approach that works for you should be based on how you learn best. One powerful method is to evolve your learning from simple practice into complex foundations, as outlined in this learning path recommended by a physicist who turned into a Data Scientist.

article thumbnail

Optimizing The Modern Developer Experience with Coder

Many software teams have migrated their testing and production workloads to the cloud, yet development environments often remain tied to outdated local setups, limiting efficiency and growth. This is where Coder comes in. In our 101 Coder webinar, you’ll explore how cloud-based development environments can unlock new levels of productivity. Discover how to transition from local setups to a secure, cloud-powered ecosystem with ease.

article thumbnail

Git for Data Science Cheatsheet

KDnuggets

Knowing git is no longer an option for data professionals. Grab this handy reference sheet now and make sure you know how to git the job done.

article thumbnail

Approaches to Text Summarization: An Overview

KDnuggets

This article will present the main approaches to text summarization currently employed, as well as discuss some of their characteristics.

article thumbnail

30 Resources for Mastering Data Visualization

KDnuggets

Want to master data visualization? This list of 30 resources and tools will help you get started on your path toward mastering data visualization.

article thumbnail

Easy Guide To Data Preprocessing In Python

KDnuggets

Preprocessing data for machine learning models is a core general skill for any Data Scientist or Machine Learning Engineer. Follow this guide using Pandas and Scikit-learn to improve your techniques and make sure your data leads to the best possible outcome.

article thumbnail

15 Modern Use Cases for Enterprise Business Intelligence

Large enterprises face unique challenges in optimizing their Business Intelligence (BI) output due to the sheer scale and complexity of their operations. Unlike smaller organizations, where basic BI features and simple dashboards might suffice, enterprises must manage vast amounts of data from diverse sources. What are the top modern BI use cases for enterprise businesses to help you get a leg up on the competition?

article thumbnail

Frameworks for Approaching the Machine Learning Process

KDnuggets

This post is a summary of 2 distinct frameworks for approaching machine learning tasks, followed by a distilled third. Do they differ considerably (or at all) from each other, or from other such processes available?

article thumbnail

Sparse Matrix Representation in Python

KDnuggets

Leveraging sparse matrix representations for your data when appropriate can spare you memory storage. Have a look at the reasons why, see how to create sparse matrices in with Python, and compare the memory requirements for standard and sparse representations of the same data.

Python 400
article thumbnail

7 Free Platforms for Building a Strong Data Science Portfolio

KDnuggets

Outshine others and increase your odds of getting hired by maintaining a data science portfolio with projects, resumes, blogs, and reports.

article thumbnail

How to Build a Data Science Enablement Team: A Complete Guide

KDnuggets

A Data Science Enablement Team consists of people from various departments like marketing, sales, product development, etc. They are responsible for providing the necessary tools and resources to help the data scientists do their job more efficiently.

article thumbnail

Marketing Operations in 2025: A New Framework for Success

Speaker: Mike Rizzo, Founder & CEO, MarketingOps.com and Darrell Alfonso, Director of Marketing Strategy and Operations, Indeed.com

Though rarely in the spotlight, marketing operations are the backbone of the efficiency, scalability, and alignment that define top-performing marketing teams. In this exclusive webinar led by industry visionaries Mike Rizzo and Darrell Alfonso, we’re giving marketing operations the recognition they deserve! We will dive into the 7 P Model —a powerful framework designed to assess and optimize your marketing operations function.

article thumbnail

A Beginner’s Guide to Web Scraping Using Python

KDnuggets

This article serves as a beginner’s guide to web scraping using Python and looks at the different frameworks and methods you can use, outlined in simple terms.

Python 400
article thumbnail

Mathematics for Machine Learning: The Free eBook

KDnuggets

Check out this free ebook covering the fundamentals of mathematics for machine learning, as well as its companion website of exercises and Jupyter notebooks.

article thumbnail

The ABCs of NLP, From A to Z

KDnuggets

There is no shortage of tools today that can help you through the steps of natural language processing, but if you want to get a handle on the basics this is a good place to start. Read about the ABCs of NLP, all the way from A to Z.

article thumbnail

10 Cheat Sheets You Need To Ace Data Science Interview

KDnuggets

The only cheat you need for a job interview and data professional life. It includes SQL, web scraping, statistics, data wrangling and visualization, business intelligence, machine learning, deep learning, NLP, and super cheat sheets.

article thumbnail

Prepare Now: 2025's Must-Know Trends For Product And Data Leaders

Speaker: Jay Allardyce, Deepak Vittal, Terrence Sheflin, and Mahyar Ghasemali

As we look ahead to 2025, business intelligence and data analytics are set to play pivotal roles in shaping success. Organizations are already starting to face a host of transformative trends as the year comes to a close, including the integration of AI in data analytics, an increased emphasis on real-time data insights, and the growing importance of user experience in BI solutions.

article thumbnail

Data Representation for Natural Language Processing Tasks

KDnuggets

In NLP we must find a way to represent our data (a series of texts) to our systems (e.g. a text classifier). As Yoav Goldberg asks, "How can we encode such categorical data in a way which is amenable for us by a statistical classifier?" Enter the word vector.

article thumbnail

More Performance Evaluation Metrics for Classification Problems You Should Know

KDnuggets

When building and optimizing your classification model, measuring how accurately it predicts your expected outcome is crucial. However, this metric alone is never the entire story, as it can still offer misleading results. That's where these additional performance evaluations come into play to help tease out more meaning from your model.

article thumbnail

5 Concepts You Should Know About Gradient Descent and Cost Function

KDnuggets

Why is Gradient Descent so important in Machine Learning? Learn more about this iterative optimization algorithm and how it is used to minimize a loss function.

article thumbnail

Top 10 Data Science Myths Busted

KDnuggets

The data science field is full of job opportunities, yet there is still a lot of confusion about what data scientists actually do. This confusion is largely due to the many myths that exist about the role of a data scientist. In this article, we will bust the top 10 myths about data science. By the end of this article, you will have a better understanding of the role of a data scientist and what it takes to be one.

article thumbnail

How to Drive Cost Savings, Efficiency Gains, and Sustainability Wins with MES

Speaker: Nikhil Joshi, Founder & President of Snic Solutions

Is your manufacturing operation reaching its efficiency potential? A Manufacturing Execution System (MES) could be the game-changer, helping you reduce waste, cut costs, and lower your carbon footprint. Join Nikhil Joshi, Founder & President of Snic Solutions, in this value-packed webinar as he breaks down how MES can drive operational excellence and sustainability.

article thumbnail

SQL vs NoSQL: 7 Key Takeaways

KDnuggets

People assume that NoSQL is a counterpart to SQL. Instead, it’s a different type of database designed for use-cases where SQL is not ideal. The differences between the two are many, although some are so crucial that they define both databases at their cores.

SQL 400
article thumbnail

How to Select Rows and Columns in Pandas Using [ ],loc, iloc,at and.iat

KDnuggets

Subset selection is one of the most frequently performed tasks while manipulating data. Pandas provides different ways to efficiently select subsets of data from your DataFrame.

Python 400
article thumbnail

Key-Value Databases, Explained

KDnuggets

Among the four big NoSQL database types, key-value stores are probably the most popular ones due to their simplicity and fast performance. Let’s further explore how key-value stores work and what are their practical uses.

Database 399
article thumbnail

7 Techniques to Handle Imbalanced Data

KDnuggets

This blog post introduces seven techniques that are commonly applied in domains like intrusion detection or real-time bidding, because the datasets are often extremely imbalanced.

article thumbnail

Improving the Accuracy of Generative AI Systems: A Structured Approach

Speaker: Anindo Banerjea, CTO at Civio & Tony Karrer, CTO at Aggregage

When developing a Gen AI application, one of the most significant challenges is improving accuracy. This can be especially difficult when working with a large data corpus, and as the complexity of the task increases. The number of use cases/corner cases that the system is expected to handle essentially explodes. 💥 Anindo Banerjea is here to showcase his significant experience building AI/ML SaaS applications as he walks us through the current problems his company, Civio, is solving.