This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Key Takeaways Big Data focuses on collecting, storing, and managing massive datasets. DataScience extracts insights and builds predictive models from processed data. Big Data technologies include Hadoop, Spark, and NoSQL databases. DataScience uses Python, R, and machine learning frameworks.
Data scientists with a PhD or a master’s degree in computerscience or a related field can earn more than $150,000 per year. Data scientists who work in the financial services industry or the healthcare industry can also earn more than the average. The most popular datascience tools include Hadoop, Spark, and Hive.
Though you may encounter the terms “datascience” and “data analytics” being used interchangeably in conversations or online, they refer to two distinctly different concepts. And you should have experience working with big data platforms such as Hadoop or Apache Spark.
Designing big data architecture They create big data architectures tailored to the organization, selecting suitable technologies to build and maintain scalable data processing systems. Education and career path for big data engineers Aspiring Big Data Engineers typically follow a well-defined educational and career path.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content