Remove AWS Remove Data Lakes Remove SQL
article thumbnail

How AWS sales uses Amazon Q Business for customer engagement

AWS Machine Learning Blog

Earlier this year, we published the first in a series of posts about how AWS is transforming our seller and customer journeys using generative AI. Field Advisor serves four primary use cases: AWS-specific knowledge search With Amazon Q Business, weve made internal data sources as well as public AWS content available in Field Advisors index.

AWS 114
article thumbnail

Shaping the future: OMRON’s data-driven journey with AWS

AWS Machine Learning Blog

At the heart of this transformation is the OMRON Data & Analytics Platform (ODAP), an innovative initiative designed to revolutionize how the company harnesses its data assets. Amazon AppFlow was used to facilitate the smooth and secure transfer of data from various sources into ODAP.

AWS 90
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

AWS re:Invent 2024 Highlights: Top takeaways from Swami Sivasubramanian to help customers manage generative AI at scale

AWS Machine Learning Blog

We spoke with Dr. Swami Sivasubramanian, Vice President of Data and AI, shortly after AWS re:Invent 2024 to hear his impressionsand to get insights on how the latest AWS innovations help meet the real-world needs of customers as they build and scale transformative generative AI applications. Canva uses AWS to power 1.2

AWS 102
article thumbnail

How Twilio generated SQL using Looker Modeling Language data with Amazon Bedrock

AWS Machine Learning Blog

As one of the largest AWS customers, Twilio engages with data, artificial intelligence (AI), and machine learning (ML) services to run their daily workloads. Data is the foundational layer for all generative AI and ML applications.

SQL 132
article thumbnail

How Rocket Companies modernized their data science solution on AWS

AWS Machine Learning Blog

Communication between the two systems was established through Kerberized Apache Livy (HTTPS) connections over AWS PrivateLink. Data exploration and model development were conducted using well-known machine learning (ML) tools such as Jupyter or Apache Zeppelin notebooks. This also led to a backlog of data that needed to be ingested.

article thumbnail

Governing ML lifecycle at scale: Best practices to set up cost and usage visibility of ML workloads in multi-account environments

AWS Machine Learning Blog

For a multi-account environment, you can track costs at an AWS account level to associate expenses. A combination of an AWS account and tags provides the best results. Implement a tagging strategy A tag is a label you assign to an AWS resource. The AWS reserved prefix aws: tags provide additional metadata tracked by AWS.

ML 115
article thumbnail

AWS re:Invent 2023 Amazon Redshift Sessions Recap

Flipboard

Customers use Amazon Redshift as a key component of their data architecture to drive use cases from typical dashboarding to self-service analytics, real-time analytics, machine learning (ML), data sharing and monetization, and more.

AWS 139