Remove AWS Remove Big Data Analytics Remove Clustering
article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

Flipboard

To implement this solution, complete the following steps: Set up Zero-ETL integration from the AWS Management Console for Amazon Relational Database Service (Amazon RDS). An AWS Identity and Access Management (IAM) user with sufficient permissions to interact with the AWS Management Console and related AWS services.

ETL 138
article thumbnail

10 Things AWS Can Do for Your SaaS Company

Smart Data Collective

AWS (Amazon Web Services), the comprehensive and evolving cloud computing platform provided by Amazon, is comprised of infrastructure as a service (IaaS), platform as a service (PaaS) and packaged software as a service (SaaS). With its wide array of tools and convenience, AWS has already become a popular choice for many SaaS companies.

AWS 138
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Fast and cost-effective LLaMA 2 fine-tuning with AWS Trainium

AWS Machine Learning Blog

In this post, we walk through how to fine-tune Llama 2 on AWS Trainium , a purpose-built accelerator for LLM training, to reduce training times and costs. We review the fine-tuning scripts provided by the AWS Neuron SDK (using NeMo Megatron-LM), the various configurations we used, and the throughput results we saw.

AWS 129
article thumbnail

Apply fine-grained data access controls with AWS Lake Formation in Amazon SageMaker Data Wrangler

AWS Machine Learning Blog

You can streamline the process of feature engineering and data preparation with SageMaker Data Wrangler and finish each stage of the data preparation workflow (including data selection, purification, exploration, visualization, and processing at scale) within a single visual interface.

AWS 98
article thumbnail

Use LangChain with PySpark to process documents at massive scale with Amazon SageMaker Studio and Amazon EMR Serverless

AWS Machine Learning Blog

Cost optimization – The serverless nature of the integration means you only pay for the compute resources you use, rather than having to provision and maintain a persistent cluster. SageMaker Studio runs inside an AWS managed virtual private cloud ( VPC ), with network access for SageMaker Studio domains, in this setup configured as VPC-only.

AWS 121
article thumbnail

Essential data engineering tools for 2023: Empowering for management and analysis

Data Science Dojo

It supports various data types and offers advanced features like data sharing and multi-cluster warehouses. Amazon Redshift: Amazon Redshift is a cloud-based data warehousing service provided by Amazon Web Services (AWS). It is known for its high performance and cost-effectiveness.

article thumbnail

Accelerate time to insight with Amazon SageMaker Data Wrangler and the power of Apache Hive

AWS Machine Learning Blog

Data scientists and data engineers use Apache Spark, Apache Hive, and Presto running on Amazon EMR for large-scale data processing. This blog post will go through how data professionals may use SageMaker Data Wrangler’s visual interface to locate and connect to existing Amazon EMR clusters with Hive endpoints.