Remove Analytics Remove Data Lakes Remove SQL
article thumbnail

Data lakes vs. data warehouses: Decoding the data storage debate

Data Science Dojo

When it comes to data, there are two main types: data lakes and data warehouses. What is a data lake? An enormous amount of raw data is stored in its original format in a data lake until it is required for analytics applications. Which one is right for your business?

article thumbnail

KDnuggets News, January 18: 7 Best Platforms to Practice SQL • Explainable AI: 10 Python Libraries for Demystifying Your Model’s Decisions

KDnuggets

7 Best Platforms to Practice SQL • Explainable AI: 10 Python Libraries for Demystifying Your Model's Decisions • ChatGPT: Everything You Need to Know • Data Lakes and SQL: A Match Made in Data Heaven • Google Data Analytics Certification Review for 2023

SQL 216
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

CI/CD for Data Pipelines: A Game-Changer with AnalyticsCreator

Data Science Blog

It offers full BI-Stack Automation, from source to data warehouse through to frontend. It supports a holistic data model, allowing for rapid prototyping of various models. It also supports a wide range of data warehouses, analytical databases, data lakes, frontends, and pipelines/ETL.

article thumbnail

How Twilio generated SQL using Looker Modeling Language data with Amazon Bedrock

AWS Machine Learning Blog

Managing and retrieving the right information can be complex, especially for data analysts working with large data lakes and complex SQL queries. This post highlights how Twilio enabled natural language-driven data exploration of business intelligence (BI) data with RAG and Amazon Bedrock.

SQL 132
article thumbnail

Data Version Control for Data Lakes: Handling the Changes in Large Scale

ODSC - Open Data Science

In the ever-evolving world of big data, managing vast amounts of information efficiently has become a critical challenge for businesses across the globe. As data lakes gain prominence as a preferred solution for storing and processing enormous datasets, the need for effective data version control mechanisms becomes increasingly evident.

article thumbnail

Sneak peek at Microsoft Fabric price and its promising features

Dataconomy

Microsoft has made good on its promise to deliver a simplified and more efficient Microsoft Fabric price model for its end-to-end platform designed for analytics and data workloads. Microsoft’s unified pricing model for the Fabric suite marks a significant advancement in the analytics and data market.

Power BI 194
article thumbnail

How to modernize data lakes with a data lakehouse architecture

IBM Journey to AI blog

Data Lakes have been around for well over a decade now, supporting the analytic operations of some of the largest world corporations. Such data volumes are not easy to move, migrate or modernize. The challenges of a monolithic data lake architecture Data lakes are, at a high level, single repositories of data at scale.