Remove AI Remove Cross Validation Remove Support Vector Machines
article thumbnail

AI-driven mangrove mapping on Farasan Islands, Saudi Arabia: enhancing the detection of dispersed patches with ML classifiers

Flipboard

Machine learning models, Random Forest (RF), Support Vector Machine (SVM), eXtreme Gradient Boost (GB), and an ensemble approach were employed using spectral indices such as NDVI, MNDWI, SR, GCVI, and LST. The ensemble model achieved an overall accuracy (OA) of 92.2% and a kappa coefficient (KC) of 0.84. OA and 0.76

article thumbnail

An Essential Introduction to SVM Algorithm in Machine Learning

Pickl AI

Summary: Support Vector Machine (SVM) is a supervised Machine Learning algorithm used for classification and regression tasks. Among the many algorithms, the SVM algorithm in Machine Learning stands out for its accuracy and effectiveness in classification tasks. What is the SVM Algorithm in Machine Learning?

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

How IDIADA optimized its intelligent chatbot with Amazon Bedrock

AWS Machine Learning Blog

AI now plays a pivotal role in the development and evolution of the automotive sector, in which Applus+ IDIADA operates. In this post, we showcase the research process undertaken to develop a classifier for human interactions in this AI-based environment using Amazon Bedrock.

article thumbnail

Top 10 Data Science Interviews Questions and Expert Answers

Pickl AI

Machine Learning Algorithms Candidates should demonstrate proficiency in a variety of Machine Learning algorithms, including linear regression, logistic regression, decision trees, random forests, support vector machines, and neural networks. What is cross-validation, and why is it used in Machine Learning?

article thumbnail

Bias and Variance in Machine Learning

Pickl AI

Unstable Support Vector Machines (SVM) Support Vector Machines can be prone to high variance if the kernel used is too complex or if the cost parameter is not properly tuned. Regular cross-validation and model evaluation are essential to maintain this equilibrium.

article thumbnail

Feature Selection Techniques in Machine Learning

Pickl AI

RFE works effectively with algorithms like Support Vector Machines (SVMs) and linear regression. Here, we discuss two critical aspects: the impact on model accuracy and the use of cross-validation for comparison. The model is trained at each step, and features are ranked according to their contribution.

article thumbnail

Artificial Intelligence Using Python: A Comprehensive Guide

Pickl AI

Introduction Artificial Intelligence (AI) transforms industries by enabling machines to mimic human intelligence. Python’s simplicity, versatility, and extensive library support make it the go-to language for AI development. Python’s strength in AI development lies in its rich ecosystem of libraries.