This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Summary: A comprehensive BigData syllabus encompasses foundational concepts, essential technologies, data collection and storage methods, processing and analysis techniques, and visualisation strategies. Fundamentals of BigData Understanding the fundamentals of BigData is crucial for anyone entering this field.
Statistics Understand descriptive statistics (mean, median, mode) and inferential statistics (hypothesistesting, confidence intervals). These concepts help you analyse and interpret data effectively. They introduce two primary data structures, Series and Data Frames, which facilitate handling structured data seamlessly.
Machine learning engineer vs data scientist: The growing importance of both roles Machine learning and data science have become integral components of modern businesses across various industries. Machine learning, a subset of artificial intelligence , enables systems to learn and improve from data without being explicitly programmed.
Essential technical skills Understanding of statistics and probability A strong foundation in statistics and probability theory forms the bedrock of Data Science. R, with its robust statistical capabilities, remains a popular choice for statistical analysis and data visualization.
As a programming language it provides objects, operators and functions allowing you to explore, model and visualise data. The programming language can handle BigData and perform effective data analysis and statistical modelling.
Here are some key areas often assessed: Programming Proficiency Candidates are often tested on their proficiency in languages such as Python, R, and SQL, with a focus on data manipulation, analysis, and visualization. What is the Central Limit Theorem, and why is it important in statistics?
Accordingly, you need to make sense of the data that you derive from the various sources for which knowledge in probability, hypothesistesting, regression analysis is important. It is critical for knowing how to work with huge data sets efficiently.
B BigData : Large datasets characterised by high volume, velocity, variety, and veracity, requiring specialised techniques and technologies for analysis. DataWrangling: The cleaning, transforming, and structuring of raw data into a format suitable for analysis.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content