Remove AWS Remove Data Preparation Remove ML Remove Natural Language Processing
article thumbnail

Discover how nonprofits can utilize no-code machine learning with Amazon SageMaker Canvas

Flipboard

Machine learning (ML) has emerged as a powerful tool to help nonprofits expedite manual processes, quickly unlock insights from data, and accelerate mission outcomesfrom personalizing marketing materials for donors to predicting member churn and donation patterns.

article thumbnail

End-to-End model training and deployment with Amazon SageMaker Unified Studio

Flipboard

Although rapid generative AI advancements are revolutionizing organizational natural language processing tasks, developers and data scientists face significant challenges customizing these large models. It’s available as a standalone service on the AWS Management Console , or through APIs.

ML 99
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2023

AWS Machine Learning Blog

Yes, the AWS re:Invent season is upon us and as always, the place to be is Las Vegas! Now all you need is some guidance on generative AI and machine learning (ML) sessions to attend at this twelfth edition of re:Invent. are the sessions dedicated to AWS DeepRacer ! are the sessions dedicated to AWS DeepRacer !

AWS 139
article thumbnail

Cohere Embed multimodal embeddings model is now available on Amazon SageMaker JumpStart

AWS Machine Learning Blog

It provides a common framework for assessing the performance of natural language processing (NLP)-based retrieval models, making it straightforward to compare different approaches. Amazon SageMaker is a comprehensive, fully managed machine learning (ML) platform that revolutionizes the entire ML workflow.

AWS 110
article thumbnail

How Booking.com modernized its ML experimentation framework with Amazon SageMaker

AWS Machine Learning Blog

Sharing in-house resources with other internal teams, the Ranking team machine learning (ML) scientists often encountered long wait times to access resources for model training and experimentation – challenging their ability to rapidly experiment and innovate. If it shows online improvement, it can be deployed to all the users.

ML 136
article thumbnail

How Fastweb fine-tuned the Mistral model using Amazon SageMaker HyperPod as a first step to build an Italian large language model

AWS Machine Learning Blog

Training an LLM is a compute-intensive and complex process, which is why Fastweb, as a first step in their AI journey, used AWS generative AI and machine learning (ML) services such as Amazon SageMaker HyperPod. The team opted for fine-tuning on AWS.

article thumbnail

A generative AI prototype with Amazon Bedrock transforms life sciences and the genome analysis process

Flipboard

The Market to Molecule (M2M) value stream process, which biopharma companies must apply to bring new drugs to patients, is resource-intensive, lengthy, and highly risky. This post explores deploying a text-to-SQL pipeline using generative AI models and Amazon Bedrock to ask natural language questions to a genomics database.

SQL 83