Remove AWS Remove Clustering Remove Data Preparation
article thumbnail

PEFT fine tuning of Llama 3 on SageMaker HyperPod with AWS Trainium

AWS Machine Learning Blog

The process of setting up and configuring a distributed training environment can be complex, requiring expertise in server management, cluster configuration, networking and distributed computing. To simplify infrastructure setup and accelerate distributed training, AWS introduced Amazon SageMaker HyperPod in late 2023.

AWS 112
article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2024

AWS Machine Learning Blog

The excitement is building for the fourteenth edition of AWS re:Invent, and as always, Las Vegas is set to host this spectacular event. The sessions showcase how Amazon Q can help you streamline coding, testing, and troubleshooting, as well as enable you to make the most of your data to optimize business operations.

AWS 111
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Enhance your Amazon Redshift cloud data warehouse with easier, simpler, and faster machine learning using Amazon SageMaker Canvas

AWS Machine Learning Blog

Conventional ML development cycles take weeks to many months and requires sparse data science understanding and ML development skills. Business analysts’ ideas to use ML models often sit in prolonged backlogs because of data engineering and data science team’s bandwidth and data preparation activities.

article thumbnail

How Fastweb fine-tuned the Mistral model using Amazon SageMaker HyperPod as a first step to build an Italian large language model

AWS Machine Learning Blog

Training an LLM is a compute-intensive and complex process, which is why Fastweb, as a first step in their AI journey, used AWS generative AI and machine learning (ML) services such as Amazon SageMaker HyperPod. The team opted for fine-tuning on AWS.

article thumbnail

Centralize model governance with SageMaker Model Registry Resource Access Manager sharing

AWS Machine Learning Blog

We recently announced the general availability of cross-account sharing of Amazon SageMaker Model Registry using AWS Resource Access Manager (AWS RAM) , making it easier to securely share and discover machine learning (ML) models across your AWS accounts.

AWS 109
article thumbnail

Revolutionizing earth observation with geospatial foundation models on AWS

Flipboard

It also comes with ready-to-deploy code samples to help you get started quickly with deploying GeoFMs in your own applications on AWS. For a full architecture diagram demonstrating how the flow can be implemented on AWS, see the accompanying GitHub repository. Lets dive in! Solution overview At the core of our solution is a GeoFM.

AWS 99
article thumbnail

Apply fine-grained data access controls with AWS Lake Formation in Amazon SageMaker Data Wrangler

AWS Machine Learning Blog

You can streamline the process of feature engineering and data preparation with SageMaker Data Wrangler and finish each stage of the data preparation workflow (including data selection, purification, exploration, visualization, and processing at scale) within a single visual interface.

AWS 98