Remove Article Remove Data Models Remove ETL
article thumbnail

Power of ETL: Transforming Business Decision Making with Data Insights

Smart Data Collective

ETL (Extract, Transform, Load) is a crucial process in the world of data analytics and business intelligence. In this article, we will explore the significance of ETL and how it plays a vital role in enabling effective decision making within businesses. What is ETL? Let’s break down each step: 1.

ETL 105
article thumbnail

Rethinking Extract Transform Load (ETL) Designs

Dataversity

Have you ever been in a situation when you had to represent the ETL team by being up late for L3 support only to find out that one of your […]. The post Rethinking Extract Transform Load (ETL) Designs appeared first on DATAVERSITY.

ETL 52
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Metadata-Driven Data Warehouses are Ideal

The Data Administration Newsletter

A metadata-driven data warehouse (MDW) offers a modern approach that is designed to make EDW development much more simplified and faster. It makes use of metadata (data about your data) as its foundation and combines data modeling and ETL functionalities to build data warehouses.

article thumbnail

Introduction to Power BI Datamarts

ODSC - Open Data Science

This article is an excerpt from the book Expert Data Modeling with Power BI, Third Edition by Soheil Bakhshi, a completely updated and revised edition of the bestselling guide to Power BI and data modeling. Then we have some other ETL processes to constantly land the past 5 years of data into the Datamarts.

article thumbnail

Data Version Control for Data Lakes: Handling the Changes in Large Scale

ODSC - Open Data Science

As data lakes gain prominence as a preferred solution for storing and processing enormous datasets, the need for effective data version control mechanisms becomes increasingly evident. Schema Enforcement: Data warehouses use a “schema-on-write” approach. You can connect with her on Linkedin.

article thumbnail

The Backbone of Data Engineering: 5 Key Architectural Patterns Explained

Mlearning.ai

There are various architectural design patterns in data engineering that are used to solve different data-related problems. This article discusses five commonly used architectural design patterns in data engineering and their use cases. Finally, the transformed data is loaded into the target system.

article thumbnail

Understanding Zero-Code Development Life Cycle in Matillion

phData

With the “Data Productivity Cloud” launch, Matillion has achieved a balance of simplifying source control, collaboration, and dataops by elevating Git integration to a “first-class citizen” within the framework. In Matillion ETL, the Git integration enables an organization to connect to any Git offering (e.g.,

ETL 52