Remove 2020 Remove Clustering Remove ML
article thumbnail

Racing into the future: How AWS DeepRacer fueled my AI and ML journey

AWS Machine Learning Blog

At the time, I knew little about AI or machine learning (ML). But AWS DeepRacer instantly captured my interest with its promise that even inexperienced developers could get involved in AI and ML. Panic set in as we realized we would be competing on stage in front of thousands of people while knowing little about ML.

AWS 106
article thumbnail

How climate tech startups are building foundation models with Amazon SageMaker HyperPod

Flipboard

SageMaker HyperPod is a purpose-built infrastructure service that automates the management of large-scale AI training clusters so developers can efficiently build and train complex models such as large language models (LLMs) by automatically handling cluster provisioning, monitoring, and fault tolerance across thousands of GPUs.

AWS 125
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Deploy Amazon SageMaker pipelines using AWS Controllers for Kubernetes

AWS Machine Learning Blog

Its scalability and load-balancing capabilities make it ideal for handling the variable workloads typical of machine learning (ML) applications. Amazon SageMaker provides capabilities to remove the undifferentiated heavy lifting of building and deploying ML models. kubectl for working with Kubernetes clusters.

AWS 106
article thumbnail

ML Collaboration: Best Practices From 4 ML Teams

The MLOps Blog

The onset of the pandemic has triggered a rapid increase in the demand and adoption of ML technology. Building ML team Following the surge in ML use cases that have the potential to transform business, the leaders are making a significant investment in ML collaboration, building teams that can deliver the promise of machine learning.

ML 78
article thumbnail

Understanding and predicting urban heat islands at Gramener using Amazon SageMaker geospatial capabilities

AWS Machine Learning Blog

SageMaker geospatial capabilities make it straightforward for data scientists and machine learning (ML) engineers to build, train, and deploy models using geospatial data. Among these models, the spatial fixed effect model yielded the highest mean R-squared value, particularly for the timeframe spanning 2014 to 2020.

article thumbnail

Revolutionizing earth observation with geospatial foundation models on AWS

Flipboard

Custom geospatial machine learning : Fine-tune a specialized regression, classification, or segmentation model for geospatial machine learning (ML) tasks. Points clustered closely on the y-axis indicate similar ground conditions; sudden and persistent discontinuities in the embedding values signal significant change.

AWS 111
article thumbnail

The 2021 Executive Guide To Data Science and AI

Applied Data Science

They bring deep expertise in machine learning , clustering , natural language processing , time series modelling , optimisation , hypothesis testing and deep learning to the team. Machine Learning In this section, we look beyond ‘standard’ ML practices and explore the 6 ML trends that will set you apart from the pack in 2021.