Remove Data Pipeline Remove Data Warehouse Remove Events
article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

Flipboard

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis. or a later version) database.

ETL 137
article thumbnail

Exploring the Power of Microsoft Fabric: A Hands-On Guide with a Sales Use Case

Data Science Dojo

These experiences facilitate professionals from ingesting data from different sources into a unified environment and pipelining the ingestion, transformation, and processing of data to developing predictive models and analyzing the data by visualization in interactive BI reports.

Power BI 337
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Data sips and bites: An evening of data insights

Dataconomy

Hosted at one of Mindspace’s coworking locations, the event was a convergence of insightful talks and professional networking. Mindspace , a global coworking and flexible office provider with over 45 locations worldwide, including 13 in Germany, offered a conducive environment for this knowledge-sharing event.

article thumbnail

Best Data Engineering Tools Every Engineer Should Know

Pickl AI

Summary: Data engineering tools streamline data collection, storage, and processing. Learning these tools is crucial for building scalable data pipelines. offers Data Science courses covering these tools with a job guarantee for career growth. Below are 20 essential tools every data engineer should know.

article thumbnail

Shaping the future: OMRON’s data-driven journey with AWS

AWS Machine Learning Blog

Lambda enables serverless, event-driven data processing tasks, allowing for real-time transformations and calculations as data arrives. Step Functions complements this by orchestrating complex workflows, coordinating multiple Lambda functions, and managing error handling for sophisticated data processing pipelines.

AWS 88
article thumbnail

Guide to Digital Transformation: Data-first Architecture

Dataversity

The goal of digital transformation remains the same as ever – to become more data-driven. We have learned how to gain a competitive advantage by capturing business events in data. Events are data snap-shots of complex activity sourced from the web, customer systems, ERP transactions, social media, […].

article thumbnail

Apache Kafka and Apache Flink: An open-source match made in heaven

IBM Journey to AI blog

Apache Kafka and Apache Flink working together Anyone who is familiar with the stream processing ecosystem is familiar with Apache Kafka: the de-facto enterprise standard for open-source event streaming. Apache Kafka streams get data to where it needs to go, but these capabilities are not maximized when Apache Kafka is deployed in isolation.