Remove Data Lakes Remove Data Silos Remove ML
article thumbnail

Governing the ML lifecycle at scale, Part 3: Setting up data governance at scale

Flipboard

This post is part of an ongoing series about governing the machine learning (ML) lifecycle at scale. This post dives deep into how to set up data governance at scale using Amazon DataZone for the data mesh. The data mesh is a modern approach to data management that decentralizes data ownership and treats data as a product.

article thumbnail

Build a financial research assistant using Amazon Q Business and Amazon QuickSight for generative AI–powered insights

Flipboard

Their information is split between two types of data: unstructured data (such as PDFs, HTML pages, and documents) and structured data (such as databases, data lakes, and real-time reports). Different types of data typically require different tools to access them. Traditionally, businesses face a challenge.

AWS 143
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Shaping the future: OMRON’s data-driven journey with AWS

AWS Machine Learning Blog

By analyzing their data, organizations can identify patterns in sales cycles, optimize inventory management, or help tailor products or services to meet customer needs more effectively. Amazon AppFlow was used to facilitate the smooth and secure transfer of data from various sources into ODAP.

AWS 82
article thumbnail

8 Data Lake Vendors to Make Your Data Life Easier in 2023

ODSC - Open Data Science

To make your data management processes easier, here’s a primer on data lakes, and our picks for a few data lake vendors worth considering. What is a data lake? First, a data lake is a centralized repository that allows users or an organization to store and analyze large volumes of data.

article thumbnail

Query structured data from Amazon Q Business using Amazon QuickSight integration

AWS Machine Learning Blog

Although generative AI is fueling transformative innovations, enterprises may still experience sharply divided data silos when it comes to enterprise knowledge, in particular between unstructured content (such as PDFs, Word documents, and HTML pages), and structured data (real-time data and reports stored in databases or data lakes).

AWS 99
article thumbnail

How to Build ETL Data Pipeline in ML

The MLOps Blog

From data processing to quick insights, robust pipelines are a must for any ML system. Often the Data Team, comprising Data and ML Engineers , needs to build this infrastructure, and this experience can be painful. However, efficient use of ETL pipelines in ML can help make their life much easier.

ETL 59
article thumbnail

Why Easier Governance Is Superior Governance

Alation

Sheer volume of data makes automation with Artificial Intelligence & Machine Learning (AI & ML) an imperative. Menninger outlines how modern data governance practices may deploy a basic repository of data; this can help with some level of automation. Data lakes are repositories where much of this data winds up.