Remove Data Lakes Remove Data Models Remove Data Scientist
article thumbnail

Here’s Why Automation For Data Lakes Could Be Important

Smart Data Collective

Data Lakes are among the most complex and sophisticated data storage and processing facilities we have available to us today as human beings. Analytics Magazine notes that data lakes are among the most useful tools that an enterprise may have at its disposal when aiming to compete with competitors via innovation.

article thumbnail

Data Version Control for Data Lakes: Handling the Changes in Large Scale

ODSC - Open Data Science

In the ever-evolving world of big data, managing vast amounts of information efficiently has become a critical challenge for businesses across the globe. As data lakes gain prominence as a preferred solution for storing and processing enormous datasets, the need for effective data version control mechanisms becomes increasingly evident.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

What Are the Best Data Modeling Methodologies & Processes for My Data Lake?

phData

With the amount of data companies are using growing to unprecedented levels, organizations are grappling with the challenge of efficiently managing and deriving insights from these vast volumes of structured and unstructured data. What is a Data Lake? Consistency of data throughout the data lake.

article thumbnail

Data Warehouse vs. Data Lake

Precisely

Data warehouse vs. data lake, each has their own unique advantages and disadvantages; it’s helpful to understand their similarities and differences. In this article, we’ll focus on a data lake vs. data warehouse. It is often used as a foundation for enterprise data lakes.

article thumbnail

Governing the ML lifecycle at scale, Part 1: A framework for architecting ML workloads using Amazon SageMaker

AWS Machine Learning Blog

Data and governance foundations – This function uses a data mesh architecture for setting up and operating the data lake, central feature store, and data governance foundations to enable fine-grained data access. Data scientists create and share new features into the central feature store catalog for reuse.

ML 136
article thumbnail

How Rocket Companies modernized their data science solution on AWS

AWS Machine Learning Blog

Apache HBase was employed to offer real-time key-based access to data. Model training and scoring was performed either from Jupyter notebooks or through jobs scheduled by Apaches Oozie orchestration tool, which was part of the Hadoop implementation. This also led to a backlog of data that needed to be ingested.

article thumbnail

Best 8 Data Version Control Tools for Machine Learning 2024

DagsHub

DagsHub DagsHub is a centralized Github-based platform that allows Machine Learning and Data Science teams to build, manage and collaborate on their projects. In addition to versioning code, teams can also version data, models, experiments and more. However, these tools have functional gaps for more advanced data workflows.