Remove Data Governance Remove Data Lakes Remove Data Preparation
article thumbnail

Data lakes vs. data warehouses: Decoding the data storage debate

Data Science Dojo

When it comes to data, there are two main types: data lakes and data warehouses. What is a data lake? An enormous amount of raw data is stored in its original format in a data lake until it is required for analytics applications. Which one is right for your business?

article thumbnail

Unlock the power of data governance and no-code machine learning with Amazon SageMaker Canvas and Amazon DataZone

AWS Machine Learning Blog

Amazon DataZone is a data management service that makes it quick and convenient to catalog, discover, share, and govern data stored in AWS, on-premises, and third-party sources. The data lake environment is required to configure an AWS Glue database table, which is used to publish an asset in the Amazon DataZone catalog.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

The Ultimate Guide to Data Preparation for Machine Learning

DagsHub

Data, is therefore, essential to the quality and performance of machine learning models. This makes data preparation for machine learning all the more critical, so that the models generate reliable and accurate predictions and drive business value for the organization. Why do you need Data Preparation for Machine Learning?

article thumbnail

Apply fine-grained data access controls with AWS Lake Formation in Amazon SageMaker Data Wrangler

AWS Machine Learning Blog

You can streamline the process of feature engineering and data preparation with SageMaker Data Wrangler and finish each stage of the data preparation workflow (including data selection, purification, exploration, visualization, and processing at scale) within a single visual interface.

AWS 98
article thumbnail

Modern Data Management Essentials: Exploring Data Fabric

Precisely

While data fabric is not a standalone solution, critical capabilities that you can address today to prepare for a data fabric include automated data integration, metadata management, centralized data governance, and self-service access by consumers. Increase metadata maturity.

article thumbnail

What Do You Actually Need from a Data Catalog Tool?

Alation

The data catalog also stores metadata (data about data, like a conversation), which gives users context on how to use each asset. It offers a broad range of data intelligence solutions, including analytics, data governance, privacy, and cloud transformation. Data Catalog by Type.

article thumbnail

What Is a Data Catalog?

Alation

Figure 1 illustrates the typical metadata subjects contained in a data catalog. Figure 1 – Data Catalog Metadata Subjects. Datasets are the files and tables that data workers need to find and access. They may reside in a data lake, warehouse, master data repository, or any other shared data resource.