Remove Clustering Remove Download Remove ML
article thumbnail

Map Earth’s vegetation in under 20 minutes with Amazon SageMaker

AWS Machine Learning Blog

Amazon SageMaker supports geospatial machine learning (ML) capabilities, allowing data scientists and ML engineers to build, train, and deploy ML models using geospatial data. We use the purpose-built geospatial container with SageMaker Processing jobs for a simplified, managed experience to create and run a cluster.

ML 124
article thumbnail

PEFT fine tuning of Llama 3 on SageMaker HyperPod with AWS Trainium

AWS Machine Learning Blog

The process of setting up and configuring a distributed training environment can be complex, requiring expertise in server management, cluster configuration, networking and distributed computing. Scheduler : SLURM is used as the job scheduler for the cluster. You can also customize your distributed training.

AWS 112
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Enhance your Amazon Redshift cloud data warehouse with easier, simpler, and faster machine learning using Amazon SageMaker Canvas

AWS Machine Learning Blog

Machine learning (ML) helps organizations to increase revenue, drive business growth, and reduce costs by optimizing core business functions such as supply and demand forecasting, customer churn prediction, credit risk scoring, pricing, predicting late shipments, and many others. For this post we’ll use a provisioned Amazon Redshift cluster.

article thumbnail

Customize DeepSeek-R1 distilled models using Amazon SageMaker HyperPod recipes – Part 1

AWS Machine Learning Blog

The launcher interfaces with underlying cluster management systems such as SageMaker HyperPod (Slurm or Kubernetes) or training jobs, which handle resource allocation and scheduling. Alternatively, you can use a launcher script, which is a bash script that is preconfigured to run the chosen training or fine-tuning job on your cluster.

article thumbnail

Train, optimize, and deploy models on edge devices using Amazon SageMaker and Qualcomm AI Hub

AWS Machine Learning Blog

Business challenge Today, many developers use AI and machine learning (ML) models to tackle a variety of business cases, from smart identification and natural language processing (NLP) to AI assistants. You can train foundation models (FMs) for weeks and months without disruption by automatically monitoring and repairing training clusters.

AWS 105
article thumbnail

Customize DeepSeek-R1 671b model using Amazon SageMaker HyperPod recipes – Part 2

AWS Machine Learning Blog

With HyperPod, users can begin the process by connecting to the login/head node of the Slurm cluster. Alternatively, you can also use the AWS CloudFormation template provided in the Own Account workshop and follow the instructions to set up a cluster and a development environment to access and submit jobs to the cluster.

article thumbnail

Accelerate pre-training of Mistral’s Mathstral model with highly resilient clusters on Amazon SageMaker HyperPod

AWS Machine Learning Blog

The compute clusters used in these scenarios are composed of more than thousands of AI accelerators such as GPUs or AWS Trainium and AWS Inferentia , custom machine learning (ML) chips designed by Amazon Web Services (AWS) to accelerate deep learning workloads in the cloud.