Remove Business Intelligence Remove Data Observability Remove ETL
article thumbnail

Supercharge your data strategy: Integrate and innovate today leveraging data integration

IBM Journey to AI blog

Data must be combined and harmonized from multiple sources into a unified, coherent format before being used with AI models. This process is known as data integration , one of the key components to improving the usability of data for AI and other use cases, such as business intelligence (BI) and analytics.

article thumbnail

Alation 2022.2: Open Data Quality Initiative and Enhanced Data Governance

Alation

This has created many different data quality tools and offerings in the market today and we’re thrilled to see the innovation. People will need high-quality data to trust information and make decisions. The Lineage & Dataflow API is a good example enabling customers to add ETL transformation logic to the lineage graph.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Best Data Engineering Tools Every Engineer Should Know

Pickl AI

It helps data engineers collect, store, and process streams of records in a fault-tolerant way, making it crucial for building reliable data pipelines. Amazon Redshift Amazon Redshift is a cloud-based data warehouse that enables fast query execution for large datasets.

article thumbnail

Maximize the Power of dbt and Snowflake to Achieve Efficient and Scalable Data Vault Solutions

phData

The implementation of a data vault architecture requires the integration of multiple technologies to effectively support the design principles and meet the organization’s requirements. Having model-level data validations along with implementing a data observability framework helps to address the data vault’s data quality challenges.

SQL 52
article thumbnail

AI that’s ready for business starts with data that’s ready for AI

IBM Journey to AI blog

To power AI and analytics workloads across your transactional and purpose-built databases, you must ensure they can seamlessly integrate with an open data lakehouse architecture without duplication or additional extract, transform, load (ETL) processes.

AI 45