This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
When it comes to data, there are two main types: data lakes and datawarehouses. What is a data lake? An enormous amount of raw data is stored in its original format in a data lake until it is required for analytics applications. Which one is right for your business? Let’s take a closer look.
Summary : This guide provides an in-depth look at the top datawarehouse interview questions and answers essential for candidates in 2025. Covering key concepts, techniques, and best practices, it equips you with the knowledge needed to excel in interviews and demonstrates your expertise in data warehousing.
While data lakes and datawarehouses are both important Data Management tools, they serve very different purposes. If you’re trying to determine whether you need a data lake, a datawarehouse, or possibly even both, you’ll want to understand the functionality of each tool and their differences.
We have seen an unprecedented increase in modern datawarehouse solutions among enterprises in recent years. Experts believe that this trend will continue: The global data warehousing market is projected to reach $51.18 The reason is pretty obvious – businesses want to leverage the power of data […].
M aintaining the security and governance of data within a datawarehouse is of utmost importance. Data Security: A Multi-layered Approach In data warehousing, data security is not a single barrier but a well-constructed series of layers, each contributing to protecting valuable information.
Data warehousing (DW) and business intelligence (BI) projects are a high priority for many organizations who seek to empower more and better data-driven decisions and actions throughout their enterprises. These groups want to expand their user base for data discovery, BI, and analytics so that their business […].
It’s costly and time-consuming to manage on-premises datawarehouses — and modern cloud data architectures can deliver business agility and innovation. However, CIOs declare that agility, innovation, security, adopting new capabilities, and time to value — never cost — are the top drivers for cloud data warehousing.
Summary: A datawarehouse is a central information hub that stores and organizes vast amounts of data from different sources within an organization. Unlike operational databases focused on daily tasks, datawarehouses are designed for analysis, enabling historical trend exploration and informed decision-making.
Without effective and comprehensive validation, a datawarehouse becomes a data swamp. With the accelerating adoption of Snowflake as the cloud datawarehouse of choice, the need for autonomously validating data has become critical.
It has been ten years since Pentaho Chief Technology Officer James Dixon coined the term “data lake.” While datawarehouse (DWH) systems have had longer existence and recognition, the data industry has embraced the more […]. The post A Bridge Between Data Lakes and DataWarehouses appeared first on DATAVERSITY.
Welcome to the Dear Laura blog series! As I’ve been working to challenge the status quo on Data Governance – I get a lot of questions about how it will “really” work. The Business Dislikes Our DataWarehouse appeared first on DATAVERSITY. I’ll be sharing these questions and answers via this DATAVERSITY® series.
Welcome to the Dear Laura blog series! As I’ve been working to challenge the status quo on Data Governance – I get a lot of questions about how it will “really” work. The Business Dislikes Our DataWarehouse appeared first on DATAVERSITY. I’ll be sharing these questions and answers via this DATAVERSITY® series.
Poor dataquality is one of the top barriers faced by organizations aspiring to be more data-driven. Ill-timed business decisions and misinformed business processes, missed revenue opportunities, failed business initiatives and complex data systems can all stem from dataquality issues.
Datawarehouse (DW) testers with data integration QA skills are in demand. Datawarehouse disciplines and architectures are well established and often discussed in the press, books, and conferences. Each business often uses one or more data […]. Each business often uses one or more data […].
Dataquality plays a significant role in helping organizations strategize their policies that can keep them ahead of the crowd. Hence, companies need to adopt the right strategies that can help them filter the relevant data from the unwanted ones and get accurate and precise output.
Discover the nuanced dissimilarities between Data Lakes and DataWarehouses. Data management in the digital age has become a crucial aspect of businesses, and two prominent concepts in this realm are Data Lakes and DataWarehouses. It acts as a repository for storing all the data.
Project sponsors seek to empower more and better data-driven decisions and actions throughout their enterprise; they intend to expand their […]. The post Avoid These Mistakes on Your DataWarehouse and BI Projects: Part 3 appeared first on DATAVERSITY.
Project sponsors seek to empower more and better data-driven decisions and actions throughout their enterprise; they intend to expand their user base for […]. The post Avoid These Mistakes on Your DataWarehouse and BI Projects: Part 2 appeared first on DATAVERSITY.
In this blog, we will discuss a common problem for datawarehouses that are designed to maintain dataquality and provide evidence of accuracy. Without verification, the data can’t be trusted. Enter the mundane, but necessary, task of data reconciliation. Fortunately, it doesn’t have to be.
Organizations learned a valuable lesson in 2023: It isn’t sufficient to rely on securing data once it has landed in a cloud datawarehouse or analytical store. As a result, data owners are highly motivated to explore technologies in 2024 that can protect data from the moment it begins its journey in the source systems.
If data is the new oil, then high-qualitydata is the new black gold. Just like with oil, if you don’t have good dataquality, you will not get very far. So, what can you do to ensure your data is up to par and […]. You might not even make it out of the starting gate.
“Quality over Quantity” is a phrase we hear regularly in life, but when it comes to the world of data, we often fail to adhere to this rule. DataQuality Monitoring implements quality checks in operational data processes to ensure that the data meets pre-defined standards and business rules.
The service, which was launched in March 2021, predates several popular AWS offerings that have anomaly detection, such as Amazon OpenSearch , Amazon CloudWatch , AWS Glue DataQuality , Amazon Redshift ML , and Amazon QuickSight. You can review the recommendations and augment rules from over 25 included dataquality rules.
Summary: This blog explores the key differences between ETL and ELT, detailing their processes, advantages, and disadvantages. Understanding these methods helps organizations optimize their data workflows for better decision-making. This phase is crucial for enhancing dataquality and preparing it for analysis.
The ability to effectively deploy AI into production rests upon the strength of an organization’s data strategy because AI is only as strong as the data that underpins it. This flexibility enables organizations to maximize the potential of their data, regardless of infrastructure or use case.
When needed, the system can access an ODAP datawarehouse to retrieve additional information. The company aims to integrate additional data sources, including other mission-critical systems, into ODAP. OMRON is also exploring more advanced generative AI use cases, such as INSERT_INITIATIVES.
Suppose you’re in charge of maintaining a large set of data pipelines from cloud storage or streaming data into a datawarehouse. How can you ensure that your data meets expectations after every transformation? That’s where dataquality testing comes in.
According to IDC, the size of the global datasphere is projected to reach 163 ZB by 2025, leading to the disparate data sources in legacy systems, new system deployments, and the creation of data lakes and datawarehouses. Most organizations do not utilize the entirety of the data […].
Data engineering is all about collecting, organising, and moving data so businesses can make better decisions. Handling massive amounts of data would be a nightmare without the right tools. In this blog, well explore the best data engineering tools that make data work easier, faster, and more reliable.
There is no disputing the fact that the collection and analysis of massive amounts of unstructured data has been a huge breakthrough. This is something that you can learn more about in just about any technology blog. We would like to talk about data visualization and its role in the big data movement.
A key challenge of legacy approaches involved dataquality. How could you ensure data was valid and accurate, and then follow through on new insights with action? It got people realizing that data is a business tool, and that technologists are the custodians of that data,” points out New Zealand CIO Anthony McMahon.
Welcome to the Dear Laura blog series! As I’ve been working to challenge the status quo on Data Governance – I get a lot of questions about how it will “really” work. The post Dear Laura: Should We Hire Full-Time Data Stewards? Click to learn more about author Laura Madsen. Last year I wrote […].
In 2016, people will realize the importance of scaling the generation of insights in parallel with the data – and finally have the ability to manage sprawl and realize new levels of insights from the data. 2016 will be the year of the “logical datawarehouse.” Subscribe to Alation's Blog.
Are you drowning in data? Feeling shackled by rigid datawarehouses that can’t keep pace with your ever-evolving business needs? Traditional data storage strategies are crumbling under the weight of diverse data sources, leaving you with limited analytics and frustrated decisions. You’re not alone.
It’s no surprise that, in 2023, business enterprises want to become truly data-driven organizations. For many of these organizations, the path toward becoming more data-driven lies in the power of data lakehouses, which combine elements of datawarehouse architecture with data lakes.
In this blog, we aim to demystify generative AI for manufacturing companies , offering a clear path to implementing generative AI use cases in your business. Integration With Existing Systems AI needs a lot of data to give beneficial results, probably from many different sources and systems.
This includes integration with your datawarehouse engines, which now must balance real-time data processing and decision-making with cost-effective object storage, open source technologies and a shared metadata layer to share data seamlessly with your data lakehouse.
By employing robust data modeling techniques, businesses can unlock the true value of their data lake and transform it into a strategic asset. With many data modeling methodologies and processes available, choosing the right approach can be daunting. Want to learn more about data governance?
However, analysis of data may involve partiality or incorrect insights in case the dataquality is not adequate. Accordingly, the need for Data Profiling in ETL becomes important for ensuring higher dataquality as per business requirements. Evaluate the accuracy and completeness of the data.
This is the last of the 4-part blog series. In the previous blog , we discussed how Alation provides a platform for data scientists and analysts to complete projects and analysis at speed. In this blog we will discuss how Alation helps minimize risk with active data governance. Find Trusted Data.
These professionals encounter a range of issues when attempting to source the data they need, including: Data accessibility issues: The inability to locate and access specific data due to its location in siloed systems or the need for multiple permissions, resulting in bottlenecks and delays.
Summary: This blog discusses best practices for designing effective fact tables in dimensional models. Additionally, it addresses common challenges and offers practical solutions to ensure that fact tables are structured for optimal dataquality and analytical performance.
These range from data sources , including SaaS applications like Salesforce; ELT like Fivetran; cloud datawarehouses like Snowflake; and data science and BI tools like Tableau. This expansive map of tools constitutes today’s modern data stack. Read Q&A blog with Raj. Subscribe to Alation's Blog.
For example, data catalogs have evolved to deliver governance capabilities like managing dataquality and data privacy and compliance. It uses metadata and data management tools to organize all data assets within your organization. Ensuring dataquality is made easier as a result.
We organize all of the trending information in your field so you don't have to. Join 17,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content