Remove AWS Remove ETL Remove Information
article thumbnail

Unlocking near real-time analytics with petabytes of transaction data using Amazon Aurora Zero-ETL integration with Amazon Redshift and dbt Cloud

Flipboard

While customers can perform some basic analysis within their operational or transactional databases, many still need to build custom data pipelines that use batch or streaming jobs to extract, transform, and load (ETL) data into their data warehouse for more comprehensive analysis. Create dbt models in dbt Cloud.

ETL 138
article thumbnail

How Rocket Companies modernized their data science solution on AWS

AWS Machine Learning Blog

By analyzing a wide range of data points, were able to quickly and accurately assess the risk associated with a loan, enabling us to make more informed lending decisions and get our clients the financing they need. Communication between the two systems was established through Kerberized Apache Livy (HTTPS) connections over AWS PrivateLink.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Search enterprise data assets using LLMs backed by knowledge graphs

Flipboard

Customers want to search through all of the data and applications across their organization, and they want to see the provenance information for all of the documents retrieved. The application needs to search through the catalog and show the metadata information related to all of the data assets that are relevant to the search context.

AWS 149
article thumbnail

Reducing hallucinations in LLM agents with a verified semantic cache using Amazon Bedrock Knowledge Bases

AWS Machine Learning Blog

While these models are trained on vast amounts of generic data, they often lack the organization-specific context and up-to-date information needed for accurate responses in business settings. Lets assume that the question What date will AWS re:invent 2024 occur? If the question was Whats the schedule for AWS events in December?,

AWS 128
article thumbnail

Unify structured data in Amazon Aurora and unstructured data in Amazon S3 for insights using Amazon Q

AWS Machine Learning Blog

Whether it’s structured data in databases or unstructured content in document repositories, enterprises often struggle to efficiently query and use this wealth of information. Complete the following steps: Choose an AWS Region Amazon Q supports (for this post, we use the us-east-1 Region). aligned identity provider (IdP).

Database 115
article thumbnail

Amazon Aurora MySQL zero-ETL integration with Amazon Redshift is now generally available

Flipboard

“Data is at the center of every application, process, and business decision,” wrote Swami Sivasubramanian, VP of Database, Analytics, and Machine Learning at AWS, and I couldn’t agree more. A common pattern customers use today is to build data pipelines to move data from Amazon Aurora to Amazon Redshift.

ETL 181
article thumbnail

Harmonize data using AWS Glue and AWS Lake Formation FindMatches ML to build a customer 360 view

Flipboard

In this post, we look at how we can use AWS Glue and the AWS Lake Formation ML transform FindMatches to harmonize (deduplicate) customer data coming from different sources to get a complete customer profile to be able to provide better customer experience. Run the AWS Glue ML transform job.

AWS 123