Remove AWS Remove Definition Remove ML
article thumbnail

Apply Amazon SageMaker Studio lifecycle configurations using AWS CDK

AWS Machine Learning Blog

Amazon SageMaker Studio is the first integrated development environment (IDE) purposefully designed to accelerate end-to-end machine learning (ML) development. These automations can greatly decrease overhead related to ML project setup, facilitate technical consistency, and save costs related to running idle instances.

AWS 101
article thumbnail

Architect a mature generative AI foundation on AWS

Flipboard

Scaling and load balancing The gateway can handle load balancing across different servers, model instances, or AWS Regions so that applications remain responsive. The AWS Solutions Library offers solution guidance to set up a multi-provider generative AI gateway. Aamna Najmi is a GenAI and Data Specialist at AWS.

AWS 141
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Fine-tune and host SDXL models cost-effectively with AWS Inferentia2

AWS Machine Learning Blog

We show how to then prepare the fine-tuned model to run on AWS Inferentia2 powered Amazon EC2 Inf2 instances , unlocking superior price performance for your inference workloads. After the model is fine-tuned, you can compile and host the fine-tuned SDXL on Inf2 instances using the AWS Neuron SDK. An Amazon Web Services (AWS) account.

AWS 99
article thumbnail

Enterprise-grade natural language to SQL generation using LLMs: Balancing accuracy, latency, and scale

Flipboard

This post describes a pattern that AWS and Cisco teams have developed and deployed that is viable at scale and addresses a broad set of challenging enterprise use cases. Augmenting data with data definitions for prompt construction Several of the optimizations noted earlier require making some of the specifics of the data domain explicit.

SQL 152
article thumbnail

Revolutionizing earth observation with geospatial foundation models on AWS

Flipboard

It also comes with ready-to-deploy code samples to help you get started quickly with deploying GeoFMs in your own applications on AWS. Custom geospatial machine learning : Fine-tune a specialized regression, classification, or segmentation model for geospatial machine learning (ML) tasks. Lets dive in!

AWS 116
article thumbnail

Get started quickly with AWS Trainium and AWS Inferentia using AWS Neuron DLAMI and AWS Neuron DLC

AWS Machine Learning Blog

Starting with the AWS Neuron 2.18 release , you can now launch Neuron DLAMIs (AWS Deep Learning AMIs) and Neuron DLCs (AWS Deep Learning Containers) with the latest released Neuron packages on the same day as the Neuron SDK release. AWS DLCs provide a set of Docker images that are pre-installed with deep learning frameworks.

AWS 129
article thumbnail

Introducing SageMaker Core: A new object-oriented Python SDK for Amazon SageMaker

AWS Machine Learning Blog

We’re excited to announce the release of SageMaker Core , a new Python SDK from Amazon SageMaker designed to offer an object-oriented approach for managing the machine learning (ML) lifecycle. With SageMaker Core, managing ML workloads on SageMaker becomes simpler and more efficient. and above. Any version above 2.231.0

Python 95