Remove Apache Kafka Remove Database Remove ETL Remove Hadoop
article thumbnail

Best Data Engineering Tools Every Engineer Should Know

Pickl AI

Python, SQL, and Apache Spark are essential for data engineering workflows. Real-time data processing with Apache Kafka enables faster decision-making. A data engineer creates and manages the pipelines that transfer data from different sources to databases or cloud storage. What Does a Data Engineer Do?

article thumbnail

Navigating the Big Data Frontier: A Guide to Efficient Handling

Women in Big Data

Big data pipelines operate similarly to traditional ETL (Extract, Transform, Load) pipelines but are designed to handle much larger data volumes. Components of a Big Data Pipeline Data Sources (Collection): Data originates from various sources, such as databases, APIs, and log files.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Apache Flink for all: Making Flink consumable across all areas of your business

IBM Journey to AI blog

The unique advantages of Apache Flink Apache Flink augments event streaming technologies like Apache Kafka to enable businesses to respond to events more effectively in real time. Integration: Integrates seamlessly with other data systems and platforms, including Apache Kafka, Spark, Hadoop and various databases.

article thumbnail

Discover the Most Important Fundamentals of Data Engineering

Pickl AI

They are responsible for building and maintaining data architectures, which include databases, data warehouses, and data lakes. Data Modelling Data modelling is creating a visual representation of a system or database. Physical Models: These models specify how data will be physically stored in databases.

article thumbnail

The Backbone of Data Engineering: 5 Key Architectural Patterns Explained

Mlearning.ai

ETL Design Pattern The ETL (Extract, Transform, Load) design pattern is a commonly used pattern in data engineering. It is used to extract data from various sources, transform the data to fit a specific data model or schema, and then load the transformed data into a target system such as a data warehouse or a database.

article thumbnail

Big Data Syllabus: A Comprehensive Overview

Pickl AI

Variety It encompasses the different types of data, including structured data (like databases), semi-structured data (like XML), and unstructured formats (such as text, images, and videos). It is built on the Hadoop Distributed File System (HDFS) and utilises MapReduce for data processing.

article thumbnail

Introduction to Apache NiFi and Its Architecture

Pickl AI

Below are some prominent use cases for Apache NiFi: Data Ingestion from Diverse Sources NiFi excels at collecting data from various sources, including log files, sensors, databases, and APIs. Its visual interface allows users to design complex ETL workflows with ease. How Does Apache NiFi Ensure Data Integrity?

ETL 52