Remove 2015 Remove AWS Remove ML
article thumbnail

Your guide to generative AI and ML at AWS re:Invent 2024

AWS Machine Learning Blog

The excitement is building for the fourteenth edition of AWS re:Invent, and as always, Las Vegas is set to host this spectacular event. Third, we’ll explore the robust infrastructure services from AWS powering AI innovation, featuring Amazon SageMaker , AWS Trainium , and AWS Inferentia under AI/ML, as well as Compute topics.

AWS 111
article thumbnail

Architect a mature generative AI foundation on AWS

Flipboard

Scaling and load balancing The gateway can handle load balancing across different servers, model instances, or AWS Regions so that applications remain responsive. The AWS Solutions Library offers solution guidance to set up a multi-provider generative AI gateway. Aamna Najmi is a GenAI and Data Specialist at AWS.

AWS 115
professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Build a scalable AI assistant to help refugees using AWS

AWS Machine Learning Blog

This post details our technical implementation using AWS services to create a scalable, multilingual AI assistant system that provides automated assistance while maintaining data security and GDPR compliance. Amazon Titan Embeddings also integrates smoothly with AWS, simplifying tasks like indexing, search, and retrieval.

AWS 97
article thumbnail

Build generative AI applications quickly with Amazon Bedrock IDE in Amazon SageMaker Unified Studio

AWS Machine Learning Blog

Building generative AI applications presents significant challenges for organizations: they require specialized ML expertise, complex infrastructure management, and careful orchestration of multiple services. You can obtain the SageMaker Unified Studio URL for your domains by accessing the AWS Management Console for Amazon DataZone.

AWS 112
article thumbnail

How Getir reduced model training durations by 90% with Amazon SageMaker and AWS Batch

AWS Machine Learning Blog

Established in 2015, Getir has positioned itself as the trailblazer in the sphere of ultrafast grocery delivery. In this post, we explain how we built an end-to-end product category prediction pipeline to help commercial teams by using Amazon SageMaker and AWS Batch , reducing model training duration by 90%.

AWS 129
article thumbnail

Llama 4 family of models from Meta are now available in SageMaker JumpStart

AWS Machine Learning Blog

Virginia) AWS Region. Prerequisites To try the Llama 4 models in SageMaker JumpStart, you need the following prerequisites: An AWS account that will contain all your AWS resources. An AWS Identity and Access Management (IAM) role to access SageMaker AI. The example extracts and contextualizes the buildspec-1-10-2.yml

AWS 123
article thumbnail

Getir end-to-end workforce management: Amazon Forecast and AWS Step Functions

AWS Machine Learning Blog

Getir was founded in 2015 and operates in Turkey, the UK, the Netherlands, Germany, and the United States. In this post, we describe the end-to-end workforce management system that begins with location-specific demand forecast, followed by courier workforce planning and shift assignment using Amazon Forecast and AWS Step Functions.

AWS 134