Remove 2012 Remove Data Warehouse Remove Python
article thumbnail

Build ML features at scale with Amazon SageMaker Feature Store using data from Amazon Redshift

Flipboard

Amazon Redshift is the most popular cloud data warehouse that is used by tens of thousands of customers to analyze exabytes of data every day. If you are prompted to choose a kernel, choose Data Science as the image and Python 3 as the kernel, then choose Select.

ML 123
article thumbnail

How to use Netezza Performance Server query data in Amazon Simple Storage Service (S3)

IBM Journey to AI blog

This allows data that exists in cloud object storage to be easily combined with existing data warehouse data without data movement. The advantage to NPS clients is that they can store infrequently used data in a cost-effective manner without having to move that data into a physical data warehouse table.

professionals

Sign Up for our Newsletter

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

article thumbnail

Explore data with ease: Use SQL and Text-to-SQL in Amazon SageMaker Studio JupyterLab notebooks

AWS Machine Learning Blog

Jupyter notebooks can differentiate between SQL and Python code using the %%sm_sql magic command, which must be placed at the top of any cell that contains SQL code. This command signals to JupyterLab that the following instructions are SQL commands rather than Python code. or later image versions.

SQL 129
article thumbnail

Process Mining – Ist Celonis wirklich so gut? Ein Praxisbericht.

Data Science Blog

Process Mining Tools, die als pure Process Mining Software gestartet sind Hierzu gehört Celonis, das drei-köpfige und sehr geschäftstüchtige Gründer-Team, das ich im Jahr 2012 persönlich kennenlernen durfte. Im Grunde kann man aber folgende große Herkunftskategorien ausmachen: 1. Aber Celonis war nicht das erste Process Mining Unternehmen.

article thumbnail

Super charge your LLMs with RAG at scale using AWS Glue for Apache Spark

AWS Machine Learning Blog

You can build and manage an incremental data pipeline to update embeddings on Vectorstore at scale. You can choose a wide variety of data sources including databases, data warehouses, and SaaS applications supported in AWS Glue. These functions will be used inside a Spark Python user-defined function (UDF) in later cells.

AWS 117