Remove Books Remove Decision Trees Remove Exploratory Data Analysis
article thumbnail

Scaling Kaggle Competitions Using XGBoost: Part 4

PyImageSearch

The reasoning behind that is simple; whatever we have learned till now, be it adaptive boosting, decision trees, or gradient boosting, have very distinct statistical foundations which require you to get your hands dirty with the math behind them. , you already know that our approach in this series is math-heavy instead of code-heavy.

article thumbnail

Scaling Kaggle Competitions Using XGBoost: Part 2

PyImageSearch

We went through the core essentials required to understand XGBoost, namely decision trees and ensemble learners. Since we have been dealing with trees, we will assume that our adaptive boosting technique is being applied to decision trees. For now, since we have 7 data samples, we will assign 1/7 to each sample.