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The magnitude of a matrix

Let Z be a matrix.

A weighting on Z is a column vector w such that

Zw =

1
...
1

 .

A coweighting on Z is a weighting on the transpose of Z.

Suppose that Z admits a weighting and a coweighting.
The magnitude of Z is

|Z| =
∑

i

wi ,

for any weighting w.

Facts: This is independent of the choice of weighting w.
Facts: It is also equal to

∑
j vj for any coweighting v.
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The similarity matrix of A is the n × n matrix Z with
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The magnitude |A| of A is the magnitude |Z| of Z (if defined).
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The magnitude of a metric space

Slogan: Magnitude is the ‘effective number of points’.

Example: Let A = (•← d →•).

• If d = 0 then |A| = 1
—there is effectively only 1 point.

• If d =∞ then |A| = 2
—there are effectively 2 (completely separate!) points.

• As d increases from 0 to ∞, |A| increases from 1 to 2.

Example: Let A = {a1, . . . , an} with d(ai , aj) =∞ for all i 6= j .
Then |A| = n.
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2. Diversity

joint with Christina Cobbold (Glasgow)
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Quantifying diversity

model of
community

formula

measure of
diversity

similarity matrix Z

n × n matrix (n = number of species)

Zij = similarity between ith and jth species = Zji

0 ≤ Zij ≤ 1

, Zii = 1

totally
dissimilar

N

identical

N

Example: a crude model would take Z =


1 0 · · · 0

0 1
. . .

...
...

. . .
. . . 0

0 · · · 0 1

.

This model assumes that distinct species are totally dissimilar.

frequency distribution p

p =

p1
...

pn


pi = relative frequency,
or relative abundance,
of the ith species

pi ≥ 0 and
∑

pi = 1

0 ‘viewpoint parameter’ q

Dq(Z,p)

(diversity
of order q)

q = 0:
rare species are

important
↓

q =∞:
rare species are
unimportant

↓

q

Dq(Z,p)

The diversity of order q ∈ [0,∞] is

Dq(Z,p) =
( ∑

i : pi>0

pi (Zp)q−1
i

) 1
1−q
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3. How to maximize diversity



The maximum diversity problem

Fix a list of n species, with similarity matrix Z.

Problem:

Which frequency distribution(s) maximize the diversity?

More exactly:

Let 0 ≤ q ≤ ∞.

What is the maximum diversity of order q,
and which distributions maximize it?

I.e., what is
sup{Dq(Z,p) : frequency distributions p},

and which p attain this supremum?
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A guess

The maximum diversity is the magnitude |Z|.
The distributions that maximize diversity are the weightings on Z,
normalized to sum to 1.

Wrong, e.g. because a weighting w might have wi < 0 for some i .
(You can’t have a negative number of birds.)

Also, surely the answer should mention q. . . ?
After all, different values of q represent different viewpoints
on what diversity is.



A guess

The maximum diversity is the magnitude |Z|.

The distributions that maximize diversity are the weightings on Z,
normalized to sum to 1.

Wrong, e.g. because a weighting w might have wi < 0 for some i .
(You can’t have a negative number of birds.)

Also, surely the answer should mention q. . . ?
After all, different values of q represent different viewpoints
on what diversity is.



A guess

The maximum diversity is the magnitude |Z|.
The distributions that maximize diversity are the weightings on Z

,
normalized to sum to 1.

Wrong, e.g. because a weighting w might have wi < 0 for some i .
(You can’t have a negative number of birds.)

Also, surely the answer should mention q. . . ?
After all, different values of q represent different viewpoints
on what diversity is.



A guess

The maximum diversity is the magnitude |Z|.
The distributions that maximize diversity are the weightings on Z,
normalized to sum to 1.

Wrong, e.g. because a weighting w might have wi < 0 for some i .
(You can’t have a negative number of birds.)

Also, surely the answer should mention q. . . ?
After all, different values of q represent different viewpoints
on what diversity is.



A guess

The maximum diversity is the magnitude |Z|.
The distributions that maximize diversity are the weightings on Z,
normalized to sum to 1.

Wrong

, e.g. because a weighting w might have wi < 0 for some i .
(You can’t have a negative number of birds.)

Also, surely the answer should mention q. . . ?
After all, different values of q represent different viewpoints
on what diversity is.



A guess

The maximum diversity is the magnitude |Z|.
The distributions that maximize diversity are the weightings on Z,
normalized to sum to 1.

Wrong, e.g. because a weighting w might have wi < 0 for some i .

(You can’t have a negative number of birds.)

Also, surely the answer should mention q. . . ?
After all, different values of q represent different viewpoints
on what diversity is.



A guess

The maximum diversity is the magnitude |Z|.
The distributions that maximize diversity are the weightings on Z,
normalized to sum to 1.

Wrong, e.g. because a weighting w might have wi < 0 for some i .
(You can’t have a negative number of birds.)

Also, surely the answer should mention q. . . ?
After all, different values of q represent different viewpoints
on what diversity is.



A guess

The maximum diversity is the magnitude |Z|.
The distributions that maximize diversity are the weightings on Z,
normalized to sum to 1.

Wrong, e.g. because a weighting w might have wi < 0 for some i .
(You can’t have a negative number of birds.)

Also, surely the answer should mention q. . . ?

After all, different values of q represent different viewpoints
on what diversity is.



A guess

The maximum diversity is the magnitude |Z|.
The distributions that maximize diversity are the weightings on Z,
normalized to sum to 1.

Wrong, e.g. because a weighting w might have wi < 0 for some i .
(You can’t have a negative number of birds.)

Also, surely the answer should mention q. . . ?
After all, different values of q represent different viewpoints
on what diversity is.



The solution
Let Z be an n × n similarity matrix.

• For B ⊆ {1, . . . , n}, write ZB = (Zij)i ,j∈B .

• B is good if ZB admits a non-negative weighting.

• For a non-negative weighting w on a subset B,
write pw for the distribution on {1, . . . , n}
obtained by extending by 0 and normalizing.

Theorem

Let 0 ≤ q ≤ ∞.

1. The maximum diversity of order q, i.e. supp Dq(Z,p), is

max{|ZB | : B is a good subset}

2. The distributions that maximize diversity of order q
are exactly those of the form pw where w is a non-negative weighting
on a good subset B for which |ZB | is maximal.
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The solution
Let Z be an n × n similarity matrix.

Corollary

There is a frequency distribution that maximizes diversity of order q
for all q simultaneously.
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Summary

1. The maximum diversity problem is completely solved
by an invariant that comes from category theory.

2. There is a spectrum of viewpoints on what ‘diverse’ means.

Different viewpoints make different judgements on when one
distribution of species is more diverse than another
—they order the set of distributions differently.

But there is a distribution that maximizes diversity
from all viewpoints simultaneously!

‘There is a best of all possible worlds.’
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