Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Read by thought-leaders and decision-makers around the world. Phone Number: +1-650-246-9381 Email: pub@towardsai.net
228 Park Avenue South New York, NY 10003 United States
Website: Publisher: https://towardsai.net/#publisher Diversity Policy: https://towardsai.net/about Ethics Policy: https://towardsai.net/about Masthead: https://towardsai.net/about
Name: Towards AI Legal Name: Towards AI, Inc. Description: Towards AI is the world's leading artificial intelligence (AI) and technology publication. Founders: Roberto Iriondo, , Job Title: Co-founder and Advisor Works for: Towards AI, Inc. Follow Roberto: X, LinkedIn, GitHub, Google Scholar, Towards AI Profile, Medium, ML@CMU, FreeCodeCamp, Crunchbase, Bloomberg, Roberto Iriondo, Generative AI Lab, Generative AI Lab Denis Piffaretti, Job Title: Co-founder Works for: Towards AI, Inc. Louie Peters, Job Title: Co-founder Works for: Towards AI, Inc. Louis-François Bouchard, Job Title: Co-founder Works for: Towards AI, Inc. Cover:
Towards AI Cover
Logo:
Towards AI Logo
Areas Served: Worldwide Alternate Name: Towards AI, Inc. Alternate Name: Towards AI Co. Alternate Name: towards ai Alternate Name: towardsai Alternate Name: towards.ai Alternate Name: tai Alternate Name: toward ai Alternate Name: toward.ai Alternate Name: Towards AI, Inc. Alternate Name: towardsai.net Alternate Name: pub.towardsai.net
5 stars – based on 497 reviews

Frequently Used, Contextual References

TODO: Remember to copy unique IDs whenever it needs used. i.e., URL: 304b2e42315e

Resources

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

Publication

This AI newsletter is all you need #66
Artificial Intelligence   Latest   Machine Learning

This AI newsletter is all you need #66

Last Updated on November 5, 2023 by Editorial Team

Author(s): Towards AI Editorial Team

Originally published on Towards AI.

What happened this week in AI by Louie

This week in AI, OpenAI again dominated the headlines as it announced the imminent rollout of new voice and image capabilities into ChatGPT. The LLM race is also continuing to heat up, with Amazon announcing significant investment into Anthropic AI.

Open AI is rolling out new multi-modal versions of GPT Turbo and GPT-4, together with ChatGPT integrations with a new text-to-speech model, Whisper (a speech-to-text model), and Dalle-3. These now give ChatGPT the ability to see, hear, and speak, together with artistic capability. These new capabilities of ChatGPT will allow users to engage in voice conversations and use images to enhance the interaction. Users can now snap a picture to have live conversations about it, helping in various activities such as identifying landmarks, planning meals based on the contents of a fridge, or assisting with math problems. These functionalities are initially rolling out to Plus and Enterprise users, with voice available on iOS and Android and images on all platforms. We are also excited by the new image generation model Dalle 3, which has a less prompt-reliant approach to image generation. We are hopeful to see some great art produced by this new iterative design via chat.

OpenAI was keen to beat Google Deepmind’s Gemini to release a full multi-modal model (although Bard already has some more limited image capabilities). It also looks set to beat Amazon’s Alexa to market with a LLM-powered text-to-speech chatbot. Amazon announced the upcoming launch of its updated Alexa powered by a multimodal LLM, capable of processing voice, video, and text embeddings. While the demo video for Alexa’s LLM primarily showcases text generation tasks, Amazon reveals that the Alexa LLM is connected to thousands of APIs and can execute complex sequences of tasks. In other Amazon news, it announced an up to $4bn investment in Anthropic AI to develop reliable, high-performing foundation models.

The AI race is heating up further, and now it looks like the leading cloud providers have lined up their key LLM labs partners with Google Cloud behind Deepmind, Microsoft Azure backing OpenAI, and Amazon AWS backing Anthropic.

– Louie Peters — Towards AI Co-founder and CEO

Hottest News

1.OpenAI Announces DALL·E 3

OpenAI is launching DALL·E 3, an improved version that excels in following instructions, requires less prompt engineering, and can communicate with ChatGPT. This integration enables users to refine DALL·E 3 prompts by describing their ideas to ChatGPT. Starting in October, DALL·E 3 will be available to ChatGPT Plus and Enterprise customers.

2. Amazon Invests $4B Into Anthropic to Competing Against Microsoft (OpenAI)

Amazon plans to invest up to $4 billion in the AI startup Anthropic. The agreement is part of a broader collaboration to develop the industry’s most reliable and high-performing foundation models. Amazon Web Services (AWS) will be the primary cloud provider for Anthropic. The investment includes AWS’s Trainium and Inferentia chips for model training and deployment.

3. DeepMind Announces AlphaMissense, a Catalog of Genetic Mutations To Help Pinpoint the Cause of Diseases

DeepMind has released AlphaMissense, a model that uses AlphaFold’s protein structure prediction to categorize missense genetic mutations as benign or malign. It surpasses human efforts by classifying 89% of 71 million variants.

4. Announcing Microsoft Copilot, Your Everyday AI Companion

Microsoft rolled out a Copilot to provide tailored assistance based on workplace data and web context. It enhances productivity and creativity in Windows 11, Microsoft 365, Edge, and Bing while prioritizing privacy. Additionally, Bing and Edge users will enjoy a personalized experience with OpenAI’s DALL.E 3 model, including AI shopping and image creation.

5. Meta Is Bringing Out ‘Sassy Chatbots’ for Younger Users

Meta is preparing to announce a generative AI chatbot, internally called “Gen AI Personas,” aimed at younger users. Meta also has plans to develop ‘dozens’ of chatbot personas, including ones for celebrities to interact with their fans.

Five 5-minute reads/videos to keep you learning

1.Adept.ai Shares Curious Errors Occurring During Their Large Training Runs

Adept.ai, an AI company, shares insights into errors that can occur during large training runs. These errors can lead to learning curve issues, where models may appear fine but must be fixed due to accumulating minor errors over time.

2. Prompt Engineering for Claude’s Long Context Window

This article provides prompting guidance to leverage Claude’s 100,000 token-long context window. It shares a quantitative case study on two techniques that can improve Claude’s recall over extended contexts by extracting reference quotes and providing examples increases.

3. DeepMind’s Cofounder: Generative AI Is Just a Phase. What’s Next Is Interactive AI

Mustafa Suleyman, co-founder of DeepMind, emphasizes the positive impact of technology on healthcare and leads an AI policy development team at Google. Backed by influential figures and companies, Suleyman introduces Pi, a friendly AI that advocates for interactive AI to connect technology with societal impact.

4. Object Detection Leaderboard

Hugging Face has introduced the Object Detection Leaderboard, featuring top-performing models based on the DETA and DETR architectures. This blog demonstrates how the models were evaluated and demystifies the popular metrics used in Object Detection, from Intersection over Union (IoU) to Average Precision (AP) and Average Recall (AR).

5. GPT 3.5 vs. Llama 2 Fine-tuning: A Comprehensive Comparison

In this post, the author documents their experiments benchmarking the fine-tuning of GPT 3.5 against Llama 2 in an SQL task and a functional representation task. GPT 3.5 slightly outperforms Llama 2. However, training and deploying GPT 3.5 costs 4–6 times higher than Llama 2.

Papers & Repositories

1.LongLoRA: Efficient Fine-tuning of Long-Context Large Language Models

LongLoRA is a method for efficiently extending the context size of pre-trained language models (LLMs) in artificial intelligence. By utilizing sparse local attention during training and dense global attention during inference, this approach allows for cost-effective fine-tuning and maintains performance. It demonstrates impressive results on various tasks and enables context extension of up to 100k tokens in LLMs.

2. Scaling Laws for Sparsely-Connected Foundation Models

Researchers have discovered a unique scaling law that shows the relationship between weight sparsity, non-zero parameters, and training data volume in foundation models. They also found that the optimal sparsity level for performance increases with more data.

3. PDFTriage: Question Answering over Long, Structured Documents

Researchers have developed PDFTriage, a solution that enhances the performance of Language model-based question-answering systems on structured documents like PDFs. By incorporating document structure and content, PDFTriage outperforms existing models in answering complex questions across various categories.

4. Chain-of-Verification Reduces Hallucination in Large Language Models

Chain-of-Verification (CoVe) is a straightforward approach that minimizes hallucinations in Language Model-based systems. CoVe has successfully reduced hallucinations across various tasks, including question-answering and text generation, through its systematic process of generating, verifying, and delivering responses.

5. Connecting Large Language Models with Evolutionary Algorithms Yields Powerful Prompt Optimizers

EvoPrompt, a new evolutionary algorithm framework, optimizes prompt generation for language models like GPT-3.5 and Alpaca. It surpasses human-engineered prompts and current methods, demonstrating its effectiveness for language tasks.

Enjoy these papers and news summaries? Get a daily recap in your inbox!

The Learn AI Together Community section!

Upcoming Community Events

The Learn AI Together Discord community hosts weekly AI seminars to help the community learn from industry experts, ask questions, and get a deeper insight into the latest research in AI. Join us for free, interactive video sessions hosted live on Discord weekly by attending our upcoming events.

  1. Explaining AI Alignment

In the Webinar, Ruiqi Zhong will give a talk on AI Alignment, hosted on the server as part of the Prompt Hackathon series of events. Learn more about Ruiqi and AI alignment before the talk in his post “Explaining AI Alignment as an NLPer and Why I am Working on It.”

Date & Time: 28th September 2023, 12:00 pm EST

Join the event here or Add our Google calendar to see all our free AI events!

Meme of the week!

This AI newsletter is all you need #66

Meme shared by archiesnake

Featured Community post from the Discord

Kylejmichel is building Glimpse, a browser extension that pulls context from real-time web data and any website you browse. It highlights key points, suggests questions and topics, and filters and rephrases the text of any website, document, article, or video. It’ll be most beneficial for students, developers, and content consumers. Check it out here and support a fellow community member! Share your questions and feedback in the thread.

AI poll of the week!

Join the discussion on Discord.

TAI Curated section

Article of the week

How to Automatically Explore and Clean Your Data with PandasAI by Cornellius Yudha Wijaya

With the GPT model around, one of the exciting applications is combining the power of LLM with Pandas. PandasAI is a Python package that provides LLM implementation in Pandas. It is aimed at complementing Pandas, not replacing them. By using PandasAI, we can turn the Pandas package into a conversational tool that would automatically explore and clean our data.

Our must-read articles

Generative AI for time series by Fabiana Clemente

How Does an LLM Generate Text? by Ivan Reznikov

If you want to publish with Towards AI, check our guidelines and sign up. We will publish your work to our network if it meets our editorial policies and standards.

Job offers

Machine Learning Platform Engineer @Mercari (Remote)

Machine Learning Engineer @OXMAN (New York, NY, USA)

Intelligent Automation / AI-ML Engineer @Node.Digital (Washington, DC, USA)

Senior Data Scientist @DNSFilter (Remote)

Junior Software Engineer (Vaga Exclusiva para PCDs) @Loggi (Remote)

Machine Learning Engineer @Blackbird.AI (Remote)

Senior Data Scientist / Machine Learning Engineer @Zenni Optical (Remote)

Interested in sharing a job opportunity here? Contact sponsors@towardsai.net.

If you are preparing your next machine learning interview, don’t hesitate to check out our leading interview preparation website, confetti!

https://www.confetti.ai/

Join thousands of data leaders on the AI newsletter. Join over 80,000 subscribers and keep up to date with the latest developments in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

Published via Towards AI

Feedback ↓

Sign Up for the Course
`; } else { console.error('Element with id="subscribe" not found within the page with class "home".'); } } }); // Remove duplicate text from articles /* Backup: 09/11/24 function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag elements.forEach(el => { const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 2) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); */ // Remove duplicate text from articles function removeDuplicateText() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, strong'); // Select the desired elements const seenTexts = new Set(); // A set to keep track of seen texts const tagCounters = {}; // Object to track instances of each tag // List of classes to be excluded const excludedClasses = ['medium-author', 'post-widget-title']; elements.forEach(el => { // Skip elements with any of the excluded classes if (excludedClasses.some(cls => el.classList.contains(cls))) { return; // Skip this element if it has any of the excluded classes } const tagName = el.tagName.toLowerCase(); // Get the tag name (e.g., 'h1', 'h2', etc.) // Initialize a counter for each tag if not already done if (!tagCounters[tagName]) { tagCounters[tagName] = 0; } // Only process the first 10 elements of each tag type if (tagCounters[tagName] >= 10) { return; // Skip if the number of elements exceeds 10 } const text = el.textContent.trim(); // Get the text content const words = text.split(/\s+/); // Split the text into words if (words.length >= 4) { // Ensure at least 4 words const significantPart = words.slice(0, 5).join(' '); // Get first 5 words for matching // Check if the text (not the tag) has been seen before if (seenTexts.has(significantPart)) { // console.log('Duplicate found, removing:', el); // Log duplicate el.remove(); // Remove duplicate element } else { seenTexts.add(significantPart); // Add the text to the set } } tagCounters[tagName]++; // Increment the counter for this tag }); } removeDuplicateText(); //Remove unnecessary text in blog excerpts document.querySelectorAll('.blog p').forEach(function(paragraph) { // Replace the unwanted text pattern for each paragraph paragraph.innerHTML = paragraph.innerHTML .replace(/Author\(s\): [\w\s]+ Originally published on Towards AI\.?/g, '') // Removes 'Author(s): XYZ Originally published on Towards AI' .replace(/This member-only story is on us\. Upgrade to access all of Medium\./g, ''); // Removes 'This member-only story...' }); //Load ionic icons and cache them if ('localStorage' in window && window['localStorage'] !== null) { const cssLink = 'https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css'; const storedCss = localStorage.getItem('ionicons'); if (storedCss) { loadCSS(storedCss); } else { fetch(cssLink).then(response => response.text()).then(css => { localStorage.setItem('ionicons', css); loadCSS(css); }); } } function loadCSS(css) { const style = document.createElement('style'); style.innerHTML = css; document.head.appendChild(style); } //Remove elements from imported content automatically function removeStrongFromHeadings() { const elements = document.querySelectorAll('h1, h2, h3, h4, h5, h6, span'); elements.forEach(el => { const strongTags = el.querySelectorAll('strong'); strongTags.forEach(strongTag => { while (strongTag.firstChild) { strongTag.parentNode.insertBefore(strongTag.firstChild, strongTag); } strongTag.remove(); }); }); } removeStrongFromHeadings(); "use strict"; window.onload = () => { /* //This is an object for each category of subjects and in that there are kewords and link to the keywods let keywordsAndLinks = { //you can add more categories and define their keywords and add a link ds: { keywords: [ //you can add more keywords here they are detected and replaced with achor tag automatically 'data science', 'Data science', 'Data Science', 'data Science', 'DATA SCIENCE', ], //we will replace the linktext with the keyword later on in the code //you can easily change links for each category here //(include class="ml-link" and linktext) link: 'linktext', }, ml: { keywords: [ //Add more keywords 'machine learning', 'Machine learning', 'Machine Learning', 'machine Learning', 'MACHINE LEARNING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ai: { keywords: [ 'artificial intelligence', 'Artificial intelligence', 'Artificial Intelligence', 'artificial Intelligence', 'ARTIFICIAL INTELLIGENCE', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, nl: { keywords: [ 'NLP', 'nlp', 'natural language processing', 'Natural Language Processing', 'NATURAL LANGUAGE PROCESSING', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, des: { keywords: [ 'data engineering services', 'Data Engineering Services', 'DATA ENGINEERING SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, td: { keywords: [ 'training data', 'Training Data', 'training Data', 'TRAINING DATA', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, ias: { keywords: [ 'image annotation services', 'Image annotation services', 'image Annotation services', 'image annotation Services', 'Image Annotation Services', 'IMAGE ANNOTATION SERVICES', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, l: { keywords: [ 'labeling', 'labelling', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, pbp: { keywords: [ 'previous blog posts', 'previous blog post', 'latest', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, mlc: { keywords: [ 'machine learning course', 'machine learning class', ], //Change your article link (include class="ml-link" and linktext) link: 'linktext', }, }; //Articles to skip let articleIdsToSkip = ['post-2651', 'post-3414', 'post-3540']; //keyword with its related achortag is recieved here along with article id function searchAndReplace(keyword, anchorTag, articleId) { //selects the h3 h4 and p tags that are inside of the article let content = document.querySelector(`#${articleId} .entry-content`); //replaces the "linktext" in achor tag with the keyword that will be searched and replaced let newLink = anchorTag.replace('linktext', keyword); //regular expression to search keyword var re = new RegExp('(' + keyword + ')', 'g'); //this replaces the keywords in h3 h4 and p tags content with achor tag content.innerHTML = content.innerHTML.replace(re, newLink); } function articleFilter(keyword, anchorTag) { //gets all the articles var articles = document.querySelectorAll('article'); //if its zero or less then there are no articles if (articles.length > 0) { for (let x = 0; x < articles.length; x++) { //articles to skip is an array in which there are ids of articles which should not get effected //if the current article's id is also in that array then do not call search and replace with its data if (!articleIdsToSkip.includes(articles[x].id)) { //search and replace is called on articles which should get effected searchAndReplace(keyword, anchorTag, articles[x].id, key); } else { console.log( `Cannot replace the keywords in article with id ${articles[x].id}` ); } } } else { console.log('No articles found.'); } } let key; //not part of script, added for (key in keywordsAndLinks) { //key is the object in keywords and links object i.e ds, ml, ai for (let i = 0; i < keywordsAndLinks[key].keywords.length; i++) { //keywordsAndLinks[key].keywords is the array of keywords for key (ds, ml, ai) //keywordsAndLinks[key].keywords[i] is the keyword and keywordsAndLinks[key].link is the link //keyword and link is sent to searchreplace where it is then replaced using regular expression and replace function articleFilter( keywordsAndLinks[key].keywords[i], keywordsAndLinks[key].link ); } } function cleanLinks() { // (making smal functions is for DRY) this function gets the links and only keeps the first 2 and from the rest removes the anchor tag and replaces it with its text function removeLinks(links) { if (links.length > 1) { for (let i = 2; i < links.length; i++) { links[i].outerHTML = links[i].textContent; } } } //arrays which will contain all the achor tags found with the class (ds-link, ml-link, ailink) in each article inserted using search and replace let dslinks; let mllinks; let ailinks; let nllinks; let deslinks; let tdlinks; let iaslinks; let llinks; let pbplinks; let mlclinks; const content = document.querySelectorAll('article'); //all articles content.forEach((c) => { //to skip the articles with specific ids if (!articleIdsToSkip.includes(c.id)) { //getting all the anchor tags in each article one by one dslinks = document.querySelectorAll(`#${c.id} .entry-content a.ds-link`); mllinks = document.querySelectorAll(`#${c.id} .entry-content a.ml-link`); ailinks = document.querySelectorAll(`#${c.id} .entry-content a.ai-link`); nllinks = document.querySelectorAll(`#${c.id} .entry-content a.ntrl-link`); deslinks = document.querySelectorAll(`#${c.id} .entry-content a.des-link`); tdlinks = document.querySelectorAll(`#${c.id} .entry-content a.td-link`); iaslinks = document.querySelectorAll(`#${c.id} .entry-content a.ias-link`); mlclinks = document.querySelectorAll(`#${c.id} .entry-content a.mlc-link`); llinks = document.querySelectorAll(`#${c.id} .entry-content a.l-link`); pbplinks = document.querySelectorAll(`#${c.id} .entry-content a.pbp-link`); //sending the anchor tags list of each article one by one to remove extra anchor tags removeLinks(dslinks); removeLinks(mllinks); removeLinks(ailinks); removeLinks(nllinks); removeLinks(deslinks); removeLinks(tdlinks); removeLinks(iaslinks); removeLinks(mlclinks); removeLinks(llinks); removeLinks(pbplinks); } }); } //To remove extra achor tags of each category (ds, ml, ai) and only have 2 of each category per article cleanLinks(); */ //Recommended Articles var ctaLinks = [ /* ' ' + '

Subscribe to our AI newsletter!

' + */ '

Take our 85+ lesson From Beginner to Advanced LLM Developer Certification: From choosing a project to deploying a working product this is the most comprehensive and practical LLM course out there!

'+ '

Towards AI has published Building LLMs for Production—our 470+ page guide to mastering LLMs with practical projects and expert insights!

' + '
' + '' + '' + '

Note: Content contains the views of the contributing authors and not Towards AI.
Disclosure: This website may contain sponsored content and affiliate links.

' + 'Discover Your Dream AI Career at Towards AI Jobs' + '

Towards AI has built a jobs board tailored specifically to Machine Learning and Data Science Jobs and Skills. Our software searches for live AI jobs each hour, labels and categorises them and makes them easily searchable. Explore over 10,000 live jobs today with Towards AI Jobs!

' + '
' + '

🔥 Recommended Articles 🔥

' + 'Why Become an LLM Developer? Launching Towards AI’s New One-Stop Conversion Course'+ 'Testing Launchpad.sh: A Container-based GPU Cloud for Inference and Fine-tuning'+ 'The Top 13 AI-Powered CRM Platforms
' + 'Top 11 AI Call Center Software for 2024
' + 'Learn Prompting 101—Prompt Engineering Course
' + 'Explore Leading Cloud Providers for GPU-Powered LLM Training
' + 'Best AI Communities for Artificial Intelligence Enthusiasts
' + 'Best Workstations for Deep Learning
' + 'Best Laptops for Deep Learning
' + 'Best Machine Learning Books
' + 'Machine Learning Algorithms
' + 'Neural Networks Tutorial
' + 'Best Public Datasets for Machine Learning
' + 'Neural Network Types
' + 'NLP Tutorial
' + 'Best Data Science Books
' + 'Monte Carlo Simulation Tutorial
' + 'Recommender System Tutorial
' + 'Linear Algebra for Deep Learning Tutorial
' + 'Google Colab Introduction
' + 'Decision Trees in Machine Learning
' + 'Principal Component Analysis (PCA) Tutorial
' + 'Linear Regression from Zero to Hero
'+ '

', /* + '

Join thousands of data leaders on the AI newsletter. It’s free, we don’t spam, and we never share your email address. Keep up to date with the latest work in AI. From research to projects and ideas. If you are building an AI startup, an AI-related product, or a service, we invite you to consider becoming a sponsor.

',*/ ]; var replaceText = { '': '', '': '', '
': '
' + ctaLinks + '
', }; Object.keys(replaceText).forEach((txtorig) => { //txtorig is the key in replacetext object const txtnew = replaceText[txtorig]; //txtnew is the value of the key in replacetext object let entryFooter = document.querySelector('article .entry-footer'); if (document.querySelectorAll('.single-post').length > 0) { //console.log('Article found.'); const text = entryFooter.innerHTML; entryFooter.innerHTML = text.replace(txtorig, txtnew); } else { // console.log('Article not found.'); //removing comment 09/04/24 } }); var css = document.createElement('style'); css.type = 'text/css'; css.innerHTML = '.post-tags { display:none !important } .article-cta a { font-size: 18px; }'; document.body.appendChild(css); //Extra //This function adds some accessibility needs to the site. function addAlly() { // In this function JQuery is replaced with vanilla javascript functions const imgCont = document.querySelector('.uw-imgcont'); imgCont.setAttribute('aria-label', 'AI news, latest developments'); imgCont.title = 'AI news, latest developments'; imgCont.rel = 'noopener'; document.querySelector('.page-mobile-menu-logo a').title = 'Towards AI Home'; document.querySelector('a.social-link').rel = 'noopener'; document.querySelector('a.uw-text').rel = 'noopener'; document.querySelector('a.uw-w-branding').rel = 'noopener'; document.querySelector('.blog h2.heading').innerHTML = 'Publication'; const popupSearch = document.querySelector$('a.btn-open-popup-search'); popupSearch.setAttribute('role', 'button'); popupSearch.title = 'Search'; const searchClose = document.querySelector('a.popup-search-close'); searchClose.setAttribute('role', 'button'); searchClose.title = 'Close search page'; // document // .querySelector('a.btn-open-popup-search') // .setAttribute( // 'href', // 'https://medium.com/towards-artificial-intelligence/search' // ); } // Add external attributes to 302 sticky and editorial links function extLink() { // Sticky 302 links, this fuction opens the link we send to Medium on a new tab and adds a "noopener" rel to them var stickyLinks = document.querySelectorAll('.grid-item.sticky a'); for (var i = 0; i < stickyLinks.length; i++) { /* stickyLinks[i].setAttribute('target', '_blank'); stickyLinks[i].setAttribute('rel', 'noopener'); */ } // Editorial 302 links, same here var editLinks = document.querySelectorAll( '.grid-item.category-editorial a' ); for (var i = 0; i < editLinks.length; i++) { editLinks[i].setAttribute('target', '_blank'); editLinks[i].setAttribute('rel', 'noopener'); } } // Add current year to copyright notices document.getElementById( 'js-current-year' ).textContent = new Date().getFullYear(); // Call functions after page load extLink(); //addAlly(); setTimeout(function() { //addAlly(); //ideally we should only need to run it once ↑ }, 5000); }; function closeCookieDialog (){ document.getElementById("cookie-consent").style.display = "none"; return false; } setTimeout ( function () { closeCookieDialog(); }, 15000); console.log(`%c 🚀🚀🚀 ███ █████ ███████ █████████ ███████████ █████████████ ███████████████ ███████ ███████ ███████ ┌───────────────────────────────────────────────────────────────────┐ │ │ │ Towards AI is looking for contributors! │ │ Join us in creating awesome AI content. │ │ Let's build the future of AI together → │ │ https://towardsai.net/contribute │ │ │ └───────────────────────────────────────────────────────────────────┘ `, `background: ; color: #00adff; font-size: large`); //Remove latest category across site document.querySelectorAll('a[rel="category tag"]').forEach(function(el) { if (el.textContent.trim() === 'Latest') { // Remove the two consecutive spaces (  ) if (el.nextSibling && el.nextSibling.nodeValue.includes('\u00A0\u00A0')) { el.nextSibling.nodeValue = ''; // Remove the spaces } el.style.display = 'none'; // Hide the element } }); // Add cross-domain measurement, anonymize IPs 'use strict'; //var ga = gtag; ga('config', 'G-9D3HKKFV1Q', 'auto', { /*'allowLinker': true,*/ 'anonymize_ip': true/*, 'linker': { 'domains': [ 'medium.com/towards-artificial-intelligence', 'datasets.towardsai.net', 'rss.towardsai.net', 'feed.towardsai.net', 'contribute.towardsai.net', 'members.towardsai.net', 'pub.towardsai.net', 'news.towardsai.net' ] } */ }); ga('send', 'pageview'); -->