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Here is an example to motivate the subject from the climate

change perspective.

The year 2003 featured one of the hottest summers on record in

southern Europe. Around 30,000 people are estimated to have

died (in many cases, because they failed to receive adequate

treatment for heatstroke).

It’s not possible for a single event like this to say whether it was

“due to climate change”. But we can ask the following question:

What is the probability that such an event would occur under

present-day climate conditions? And what would that probability

have been if there had been no greenhouse-gas-induced global

warming?

A paper by Stott et al. in Nature addressed that question directly.
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(From a presentation by Myles Allen)
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I. EXTREME VALUE THEORY
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EXTREME VALUE DISTRIBUTIONS

Suppose X1, X2, ..., are independent random variables with the
same probability distribution, and let Mn = max(X1, ..., Xn). Un-
der certain circumstances, it can be shown that there exist nor-
malizing constants an > 0, bn such that

Pr
{
Mn − bn
an

≤ x
}

= F (anx+ bn)n → H(x).

The Three Types Theorem (Fisher-Tippett, Gnedenko) asserts
that if nondegenerate H exists, it must be one of three types:

H(x) = exp(−e−x), all x (Gumbel)

H(x) =
{0 x < 0

exp(−x−α) x > 0
(Fréchet)

H(x) =
{

exp(−|x|α) x < 0

1 x > 0
(Weibull)

In Fréchet and Weibull, α > 0.
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The three types may be combined into a single generalized ex-

treme value (GEV) distribution:

H(x) = exp

−
(

1 + ξ
x− µ
ψ

)−1/ξ

+

 ,
(y+ = max(y,0))

where µ is a location parameter, ψ > 0 is a scale parameter

and ξ is a shape parameter. ξ → 0 corresponds to the Gumbel

distribution, ξ > 0 to the Fréchet distribution with α = 1/ξ, ξ < 0

to the Weibull distribution with α = −1/ξ.

ξ > 0: “long-tailed” case, 1− F (x) ∝ x−1/ξ,

ξ = 0: “exponential tail”

ξ < 0: “short-tailed” case, finite endpoint at µ− ξ/ψ
9



EXCEEDANCES OVER
THRESHOLDS

Consider the distribution of X conditionally on exceeding some

high threshold u:

Fu(y) =
F (u+ y)− F (u)

1− F (u)
.

As u→ ωF = sup{x : F (x) < 1}, often find a limit

Fu(y) ≈ G(y;σu, ξ)

where G is generalized Pareto distribution (GPD)

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.
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The Generalized Pareto Distribution

G(y;σ, ξ) = 1−
(

1 + ξ
y

σ

)−1/ξ

+
.

ξ > 0: long-tailed (equivalent to usual Pareto distribution), tail

like x−1/ξ,

ξ = 0: take limit as ξ → 0 to get

G(y;σ,0) = 1− exp
(
−
y

σ

)
,

i.e. exponential distribution with mean σ,

ξ < 0: finite upper endpoint at −σ/ξ.
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The Poisson-GPD model combines the GPD for the excesses

over the threshold with a Poisson distribtion for the number of

exceedances. Usually the mean of the Poisson distribution is

taken to be λ per unit time.
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POINT PROCESS APPROACH

Homogeneous case:

Exceedance y > u at time t has probability

1

ψ

(
1 + ξ

y − µ
ψ

)−1/ξ−1

+
exp

−
(

1 + ξ
u− µ
ψ

)−1/ξ

+

 dydt
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Illustration of point process model.
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Inhomogeneous case:

• Time-dependent threshold ut and parameters µt, ψt, ξt

• Exceedance y > ut at time t has probability

1

ψt

(
1 + ξt

y − µt
ψt

)−1/ξt−1

+
exp

−
(

1 + ξt
ut − µt
ψt

)−1/ξt

+

 dydt
• Estimation by maximum likelihood
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ESTIMATION

GEV log likelihood:

` = −N logψ −
(

1

ξ
+ 1

)∑
i

log

(
1 + ξ

Yi − µ
ψ

)
−
∑
i

(
1 + ξ

Yi − µ
ψ

)−1/ξ

provided 1 + ξ(Yi − µ)/ψ > 0 for each i.

Poisson-GPD model:

` = N logλ− λT −N logσ −
(

1 +
1

ξ

) N∑
i=1

log
(

1 + ξ
Yi
σ

)
provided 1 + ξYi/σ > 0 for all i.

The method of maximum likelihood states that we choose the

parameters (µ, ψ, ξ) or (λ, σ, ξ) to maximize `. These can be

calculated numerically on the computer.
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DIAGNOSTICS

Gumbel plots

QQ plots of residuals

Mean excess plot

Z and W plots
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Gumbel plots

Used as a diagnostic for Gumbel distribution with annual maxima

data. Order data as Y1:N ≤ ... ≤ YN :N , then plot Yi:N against

reduced value xi:N ,

xi:N = − log(− log pi:N),

pi:N being the i’th plotting position, usually taken to be (i−1
2)/N .

A straight line is ideal. Curvature may indicate Fréchet or Weibull

form. Also look for outliers.
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Gumbel plots. (a) Annual maxima for River Nidd flow series. (b)

Annual maximum temperatures in Ivigtut, Iceland.
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QQ plots of residuals

A second type of probability plot is drawn after fitting the model.

Suppose Y1, ..., YN are IID observations whose common distribu-

tion function is G(y; θ) depending on parameter vector θ. Sup-

pose θ has been estimated by θ̂, and let G−1(p; θ) denote the

inverse distribution function of G, written as a function of θ. A

QQ (quantile-quantile) plot consists of first ordering the obser-

vations Y1:N ≤ ... ≤ YN :N , and then plotting Yi:N against the

reduced value

xi:N = G−1(pi:N ; θ̂),

where pi:N may be taken as (i− 1
2)/N . If the model is a good fit,

the plot should be roughly a straight line of unit slope through

the origin.

Examples...
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QQ plots for GPD, Nidd data. (a) u = 70. (b) u = 100.
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Mean excess plot

Idea: for a sequence of values of w, plot the mean excess over

w against w itself. If the GPD is a good fit, the plot should be

approximately a straight line.

In practice, the actual plot is very jagged and therefore its “straight-

ness” is difficult to assess. However, a Monte Carlo technique,

assuming the GPD is valid throughout the range of the plot, can

be used to assess this.

Examples...
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Mean excess over threshold plots for Nidd data, with Monte Carlo

confidence bands, relative to threshold 70 (a) and 100 (b).

23



Z- and W-statistic plots

Consider nonstationary model with µt, ψt, ξt dependent on t.

Z statistic based on intervals between exceedances Tk:

Zk =
∫ Tk
Tk−1

λu(s)ds,

λu(s) = {1 + ξs(u− µs)/ψs)}−1/ξs.

W statistic based on excess values: if Yk is excess over threshold
at time Tk,

Wk =
1

ξTk
log

{
1 +

ξTkYk

ψTk + ξTk(u− µTk)

}
.

Idea: if the model is exact, both Zk and Wk and i.i.d. exponential
with mean 1. Can test this with various plots.

24



 

Diagnostic plots based on Z and W statistics for Charlotte wind-

speed data.
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II. NORTH ATLANTIC CYCLONES
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Data from HURDAT

Maximum windspeeds in all North Atlantic Cyclones from 1851–

2007
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POT MODELS 1900–2007, u=102.5

Model p NLLH NLLH+p
Gumbel 2 847.8 849.8

GEV 3 843.8 846.8
GEV, lin µ 4 834.7 838.7

GEV, quad µ 5 833.4 838.4
GEV, cubic µ 6 829.8 835.8

GEV, lin µ, lin logψ 5 828.0 833.0
GEV, quad µ, lin logψ 6 826.8 832.8
GEV, lin µ, quad logψ 6 827.2 833.2

Fitted model: µ = β0 + β1t, logψ = β2 + β3t, ξ const

β0 β1 β2 β3 ξ
Estimate 102.5 0.0158 2.284 0.0075 –0.302

S.E. 2.4 0.049 0.476 0.0021 0.066
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 Diagnostic Plots for Atlantic Cyclones
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III. EUROPEAN HEATWAVE
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Data:

5 model runs from CCSM 1871–2100, including anthropogenic
forcing

2 model runs from UKMO 1861–2000, including anthropogenic
forcing

1 model runs from UKMO 2001–2100, including anthropogenic
forcing

2 control runs from CCSM, 230+500 years

2 control runs from UKMO, 341+81 years

All model data have been calculated for the grid box from 30–50o

N, 10o W–40o E, annual average temperatures over June–August

Expressed an anomalies from 1961–1990, similar to Stott, Stone
and Allen (2004)
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Method:

Fit POT models with various trend terms to the anthropogenic

model runs, 1861–2010

Also fit trend-free model to control runs (µ = 0.176, logψ =

−1.068, ξ = −0.068)
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POT MODELS 1861–2010, u=1

Model p NLLH NLLH+p
Gumbel 2 349.6 351.6

GEV 3 348.6 351.6
GEV, lin µ 4 315.5 319.5

GEV, quad µ 5 288.1 293.1
GEV, cubic µ 6 287.7 293.7
GEV, quart µ 7 285.1 292.1

GEV, quad µ, lin logψ 6 287.9 293.9
GEV, quad µ, quad logψ 7 287.0 294.9

Fitted model: µ = β0 + β1t+ β2t
2, ψ, ξ const

β0 β1 β2 logψ ξ
Estimate –0.187 –0.030 0.000215 0.047 0.212

S.E. 0.335 0.0054 0.00003 0.212 0.067
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 Diagnostic Plots for Temperatures (Control)
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 Diagnostic Plots for Temperatures (Anthropogenic)

39



We now estimate the probabilities of crossing various thresholds

in 2003.

Express answer as N=1/(exceedance probability)

Threshold 2.3:

N=3024 (control), N=29.1 (anthropogenic)

Threshold 2.6:

N=14759 (control), N=83.2 (anthropogenic)
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Comments

1. Differences from Stott-Stone-Allen conclusions arise for two

reasons; different settings of climate models (in particular, I

used “control runs” where they used “natural forcings”); but

also, different climate models. Not clear how much of the

difference is due to inconsistencies between different climate

models. (In particular, use of anomalies from 1961–1990 is

very important, as the different models differ quite a bit in

actual projected temperatures.)

2. A more sophisticated approach would be to use observational

data from 1850–2002 to calibrate the climate models; rather

similar to the approach of Tebaldi et al. (recall opening

classes of this course). This is an open research problem!
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IV. WANG JUNXIA’S RECORD

References:

Robinson and Tawn (1995), Applied Statistics

Smith (1997), Applied Statistics
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On September 13, 1993, the Chinese athlete Wang Junxia ran

a new world record for the 3000 meter track race in 8 minutes,

6.11 seconds (486.11 sec.).

This improved by 6.08 seconds the record she had run the day

before, which in turn improved by 10.43 seconds on the previ-

ous existing record (502.62 seconds). Both times, she tested

negatively for drugs.

Nevertheless there was widespread suspicion that the record was,

indeed, drug assisted.

Robinson and Tawn compiled a record of the 5 independent best

times each year from 1972–1992, together with Wang’s record.
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Initial models for the annual minimum:

Gt(x) = 1− exp

−{1−
ξ(x− µt)

σ

}−1/ξ

+

 ,
µt = α− β(1− e−γt).

Extended to likelihood based on 5 smallest values per year.

Based on this define

xult =

{
α− β + σ

ξ if ξ < 0,

−∞ if ξ ≥ 0.

Profile likelihood for xult: 90% confidence interval based on data

up to 1992 is (0,501.1).
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Limiting joint density of r (independent) minima per year:

Suppose the r smallest running times are x1 ≤ x2 ≤ ... ≤ xr.

Then the joint density is

1

σr


r∏

i=1

(
1− ξ

xi − µt
σ

)−1/ξ−1

+

 exp

{
−
(

1− ξ
xr − µt
σ

)−1/ξ

+

}
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Smith (1997) suggested instead fitting data form 1980–1992

without trend.

In this model, a 90% confidence interval for xult was (488.2,502.29)

(excluding Wang’s record)

A 95% confidence interval for xult was (481.9,502.43) (including

Wang’s record)

One-sided P-value .039

Still not conclusive
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Alternative Bayesian Analysis

Compute the predictive distribution for the record in 1993, con-

ditional on a new record being set

Use prior density π(µ, σ, ξ) ∝ σ−1 on −∞ < µ <∞, σ > 0, ξ < 0.

If Yt denote observed (prior) data up to year t, ymin is exist-

ing record, and the annual minimum for year t + 1 has c.d.f.

Gt+1(y;µ, σ, ξ), then the conditional predictive c.d.f. for the

record y in year t+ 1, given y < ymin, is∫ ∫ ∫ Gt+1(y;µ, σ, ξ)

Gt+1(ymin;µ, σ, ξ)
π(µ, σ, ξ | Yt)dµdσdξ.
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Main Result

Posterior probability of observed record ≤ 486.11 is .00047 (sub-

sequently revised to .0006; see Smith (2003)).

This seems to give much more convincing evidence that Wang’s

record was indeed a very unusual outlier, whether drug-assisted

or not.
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Posterior density for xult as well as conditional predictive density

for new record. The latter has a much more rapidly decreasing

left tail.
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Take-Home Message

For computing the probability of a specific event, a predictive

distribution may be much more meaningful than a posterior or

likelihood-based interval for some parameter. This leads natu-

rally into Bayesian approaches, because only a Bayesian approach

adequately takes into account both the uncertainty of the un-

known parameters and the randomness of the outcome itself.

Next, we see an example of the same reasoning, applied in the

context of an insurance risk problem.
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V. INSURANCE EXTREMES
(joint work with Dougal Goodman)
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Oil company data:

(a) Main dataset

(b) cumulative

number of claims

(c) cumulative total claims

(d) mean excess plot
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Main dataset: 393 insurance claims experienced by a large oil

company, subdivided into 6 classes of claim

Objective to characterize risk to the company from future ex-

treme claims

Initial analysis: fit GPD and point process model to exceedances

over various thresholds.
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Fitted parameters for GPD model
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Fitted parameters for point process model
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 Diagnostic plots for oil company data: u = 5
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We used a Bayesian analysis to calculate predictive distribution

of claim in a future year (similar to Wang Junxia analysis)
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 Posterior densities for µ and logψ: 4 realizations
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Posterior densities for ξ and predictive DF: 4 realizations
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Hierarchical Analysis

Preliminary analyses indicate:

1. When separate GPDs are fitted to each of the 6 types of

claim, there are clear difference among the parameters.

2. The rate of high-threshold crossings does not appear to be

uniform over the years, but peaks around years 10–12.

66



Level I. Parameters mµ, mψ, mξ, s
2
µ, s

2
ψ, s

2
ξ are generated from

a prior distribution.

Level II. Conditional on the parameters in Level I, parameters

µ1, ..., µJ (where J is the number of types) are independently

drawn from N(mµ, s2
µ), the normal distribution with mean mµ,

variance s2
µ. Similarly, logψ1, ..., logψJ are drawn independently

from N(mψ, s
2
ψ), ξ1, ..., ξJ are drawn independently from N(mξ, s

2
ξ ).

Level III. Conditional on Level II, for each j ∈ {1, ..., J}, the

point process of exceedances of type j is a realisation from the

homogeneous point process model with parameters µj, ψj, ξj.
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This model may be further extended to include a year effect.

Suppose the extreme value parameters for type j in year k are

not µj, ψj, ξj but µj + δk, ψj, ξj. In other words, we allow for a

time trend in the µj parameter, but not in ψj and ξj. We fix

δ1 = 0 to ensure identifiability, and let {δk, k > 1} follow an

AR(1) process:

δk = ρδk−1 + ηk, ηk ∼ N(0, s2
η)

with a vague prior on (ρ, s2
η).

Run hierarchical model by MCMC.
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 Boxplots for distribution by type of claim
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Boxplots for distribution by type of claim and year
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Finally, we collect output from hierarchical model to obtain pre-

dictive distribution of future loss in four cases:

A: All data combined into one sample, no identification of out-

liers, separate type or separate years

B: Identify separate types but not separate years

C: Identify separate types and separate years

D: As C, but omit the two largest observations which may be

outliers
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4 posterior predictive DFs
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Take-Home Message

As in the running records example, the Bayesian analysis includ-

ing a posterior distribution seems the best way to express our

uncertainty about future losses.

However, there is an additional benefit in using a hierarchical

model. In this case, fitting separate distributions to each cate-

gory of loss results in less extreme predictions of future losses.

This is possibly because the individual categories have less vari-

ability than if we combine all the claims into a single sample

without regard for category of loss.
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VI. TREND IN PRECIPITATION
EXTREMES

(joint work with Amy Grady and Gabi Hegerl)

During the past decade, there has been extensive research by
climatologists documenting increases in the levels of extreme
precipitation, but in observational and model-generated data.

With a few exceptions (papers by Katz, Zwiers and co-authors)
this literature have not made use of the extreme value distribu-
tions and related constructs

There are however a few papers by statisticians that have ex-
plored the possibility of using more advanced extreme value
methods (e.g. Cooley, Naveau and Nychka, JASA 2007; Sang
and Gelfand, Environmental and Ecological Statistics, 2008)

This discussion uses extreme value methodology to look for
trends
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CURRENT METHODOLOGY
(see e.g. Groisman et al. 2005)

Most common method is based on counting exceedances over a
high threshold (e.g. 99.7% threshold)

• Express exceedance counts as anomalies from 30-year mean
at each station

• Average over regions using “geometric weighting rule”: first
average within 1o grid boxes, then average grid boxes within
region

• Calculate standard error of this procedure using exponen-
tial spatial covariances with nugget (range of 30–500 km,
nugget-sill ratio of 0–0.7).

• Increasing trends found in many parts of the world, nearly
always stronger than trends in precipitation means, but spa-
tially and temporally heterogeneous. Strongest increase in
US extreme precipitations is post-1970, about 7% overall
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DATA SOURCES

• NCDC Rain Gauge Data

– Daily precipitation from 5873 stations

– Select 1970–1999 as period of study

– 90% data coverage provision — 4939 stations meet that

• NCAR-CCSM climate model runs

– 20 × 41 grid cells of side 1.4o

– 1970–1999 and 2070–2099 (A2 scenario)

• PRISM data

– 1405 × 621 grid, side 4km

– Elevations

– Mean annual precipitation 1970–1997
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EXTREME VALUES METHODOLOGY

Based on “point process” extreme values methodology (cf. Smith

1989, Coles 2001, Smith 2003)

Homogeneous case (cf. Shamseldin et al., preprint):

Consider all exceedances of a high threshold u over time period

[0, T ] — probability of an exceedance within (y, y+dy)×(t, t+dt)

(for y > u, t ∈ [0, T ]) of form

1

ψ

(
1 + ξ

y − µ
ψ

)−1/ξ−1

+
exp

−
(

1 + ξ
u− µ
ψ

)−1/ξ

+

 dydt
• µ, ψ, ξ are GEV parameters for annual maxima

• N-year return value — the level yN that is exceeded in any

one year with probability 1
N .
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Inhomogeneous case:

• Time-dependent threshold ut and parameters µt, ψt, ξt

• Exceedance y > ut at time t has probability

1

ψt

(
1 + ξt

y − µt
ψt

)−1/ξt−1

+
exp

−
(

1 + ξt
ut − µt
ψt

)−1/ξt

+

 dydt
• Estimation by maximum likelihood
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Seasonal models without trends

General structure:

µt = θ1,1 +
K1∑
k=1

(
θ1,2k cos

2πkt

365.25
+ θ1,2k+1 sin

2πkt

365.25

)
,

logψt = θ2,1 +
K2∑
k=1

(
θ2,2k cos

2πkt

365.25
+ θ2,2k+1 sin

2πkt

365.25

)
,

ξt = θ3,1 +
K3∑
k=1

(
θ3,2k cos

2πkt

365.25
+ θ3,2k+1 sin

2πkt

365.25

)
.

Call this the (K1,K2,K3) model.

Note: This is all for one station. The θ parameters will differ at
each station.
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Model selection

Use a sequence of likelihood ratio tests

• For each (K1,K2,K3), construct LRT against some (K′1,K
′
2,K

′
3),

K′1 ≥ K1,K
′
2 ≥ K2,K

′
3 ≥ K3 (not all equal) using standard χ2

distribution theory

• Look at proportion of rejected tests over all stations. If too

high, set Kj = K′j (j = 1,2,3) and repeat procedure

• By trial and error, we select K1 = 4,K2 = 2,K3 = 1 (17

model parameters for each station)
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Models with trend

Add to the above:

• Overall linear trend θj,2K+2t added to any of µt (j = 1),
logψt (j = 1), ξt (j = 1). Define K∗j to be 1 if this term is
included, o.w. 0.

• Interaction terms of form

t cos
2πkt

365.25
, t sin

2πkt

365.25
, k = 1, ...,K∗∗j .

Typical model denoted

(K1,K2,K3)× (K∗1,K
∗
2,K

∗
3)× (K∗∗1 ,K∗∗2 ,K∗∗3 )

Eventually use (4,2,1)×(1,1,0)×(2,2,0) model (27 parameters
for each station)
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Details

• Selection of time-varying threshold — based on the 95th

percentile of a 7-day window around the date of interest

• Declustering by r-runs method (Smith and Weissman 1994)

— use r = 1 for main model runs

• Computation via sampling the likelihood: evaluate contribu-

tions to likelihood for all observations above threshold, but

sample only 5% or 10% of those below, then renormalize to

provide accurate approximation to full likelihood
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Details (continued)

• Covariances of parameters at different sites:

θ̂s is MLE at site s, solves ∇`s(θ̂s) = 0

For two sites s, s′,

Cov
(
θ̂s, θ̂s′

)
≈
(
∇2`s(θ̂s)

)−1
Cov (∇`s(θs),∇`s′(θs′))

(
∇2`s′(θ̂s′)

)−1

Estimate covariances on RHS empirically, using a subset of

days (same subset for all stations)

Also employed when s = s′.

Open question: Should we “regularize” this covariance ma-

trix?
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Details (continued)

• Calculating the N-year return value

For one year (t = 1, ..., T ), find yθ,N numerically to solve

T∑
1

(
1 + ξt

yθ,N − µt
ψt

)−1/ξt
= − log

(
1−

1

N

)
.

– Also calculate
∂yθ,N
∂θj

by numerical implementation of in-
verse function formula

– Covariances between return level estimates at different
sites by

Cov
{
yθ̂s,N , yθ̂s′,N

}
≈

(
dyθ̂s,N

dθs

)T
Cov

(
θ̂s, θ̂s′

)dyθ̂s′,N
dθs′

 .
– Also apply to ratios of return level estimates, such as

25− year return level at s in 1999

25− year return level at s in 1970
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SPATIAL SMOOTHING

Let Zs be field of interest, indexed by s (typically the logarithm
of the 25-year RV at site s, or a log of ratio of RVs. Taking logs
improves fit of spatial model, to follow.)

Don’t observe Zs — estimate Ẑs. Assume

Ẑ | Z ∼ N [Z,W ]

Z ∼ N [Xβ, V (φ)]

Ẑ ∼ N [Xβ, V (φ) +W ].

for known W ; X are covariates, β are unknown regression pa-
rameters and φ are parameters of spatial covariance matrix V .

• φ by REML

• β given φ by GLS

• Predict Z at observed and unobserved sites by kriging
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Details

• Covariates

– Always include intercept

– Linear and quadratic terms in elevation and log of mean

annual precipitation

– Contrast “climate space” approach of Cooley et al. (2007)
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Details (continued)

• Spatial covariances

– Matérn

– Exponential with nugget

– Intrinsically stationary model

Var(Zs − Zs′) = φ1d
φ2
s,s′ + φ3

– Matérn with nugget

The last-named contains all the previous three as limiting

cases and appears to be the best overall, though is often

slow to converge (e.g. sometime the range parameter tends

to∞, which is almost equivalent to the intrinsically stationary

model)
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Details (continued)

• Spatial heterogeneity

Divide US into 19 overlapping regions, most 10o × 10o

– Kriging within each region

– Linear smoothing across region boundaries

– Same for MSPEs

– Also calculate regional averages, including MSPE
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Continental USA divided into 19 regions
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Trends across 19 regions (measured as change in log RV25) for 8 differ-
ent seasonal models and one non-seasonal model with simple linear trends.
Regional averaged trends by geometric weighted average approach.
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Summary of models shown on previous slide:

1: Preferred covariates model (r = 0 for declustering, uses 95%

threshold calculated from 7-day window)

2–4: Three variants where we add covariates to µt and/or logψt

5: Replace r = 0 by r = 1 (subsequent results are based on this

model)

6: Replace r = 0 by r = 2

7: 97% threshold calculated from 14-day window

8: 98% threshold calculated from 28-day window
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Map of 25-year return values (cm.) for the years 1970–1999
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Root mean square prediction errors for map of 25-year return

values for 1970–1999
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Ratios of return values in 1999 to those in 1970
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Root mean square prediction errors for map of ratios of 25-year

return values in 1999 to those in 1970
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∆1 S1 ∆2 S2 ∆1 S1 ∆2 S2
A –0.01 .03 0.05∗∗ .05 K 0.08∗∗∗ .01 0.09∗∗ .03
B 0.07∗∗ .03 0.08∗∗∗ .04 L 0.07∗∗∗ .02 0.07∗ .04
C 0.11∗∗∗ .01 0.10 .03 M 0.07∗∗∗ .02 0.10∗∗ .03
D 0.05∗∗∗ .01 0.06 .05 N 0.02 .03 0.01 .03
E 0.13∗∗∗ .02 0.14∗ .05 O 0.01 .02 0.02 .03
F 0.00 .02 0.05∗ .04 P 0.07∗∗∗ .01 0.11∗∗∗ .03
G –0.01 .02 0.01 .03 Q 0.07∗∗∗ .01 0.11∗∗∗ .03
H 0.08∗∗∗ .01 0.10∗∗∗ .03 R 0.15∗∗∗ .02 0.13∗∗∗ .03
I 0.07∗∗∗ .01 0.12∗∗∗ .03 S 0.14∗∗∗ .02 0.12∗ .06
J 0.05∗∗∗ .01 0.08∗∗ .03

∆1: Mean change in log 25-year return value (1970 to 1999) by

kriging

S1: Corresponding standard error (or RMSPE)

∆2, S2: same but using geometrically weighted average (GWA)

Stars indicate significance at 5%∗, 1%∗∗, 0.1%∗∗∗.
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Return value map for CCSM data (cm.): 1970–1999
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Return value map for CCSM data (cm.): 2070–2099
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Estimated ratios of 25-year return values for 2070–2099 to those

of 1970–1999, based on CCSM data, A2 scenario
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RMSPE for map in previous slide
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Extreme value model with trend: ratio of 25-year return value in

1999 to 25-year return value in 1970, based on CCSM data
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RMSPE for map in previous slide
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∆3 S3 ∆4 S4 ∆3 S3 ∆4 S4
A 0.16∗∗ .07 0.24∗∗ .10 K –0.08∗∗∗ .02 –0.11∗ .05
B 0.14∗∗∗ .04 0.12∗∗∗ .06 L –0.04 .04 –0.03 .06
C 0.02 .05 –0.14 .11 M 0.01 .03 0.00 .08
D –0.06 .04 –0.15 .10 N 0.06∗∗ .02 0.05 .06
E –0.07∗ .03 –0.09 .08 O –0.03 .04 –0.06 .07
F –0.07∗ .04 –0.03 .05 P –0.01 .04 –0.07 .07
G 0.03 .03 0.08∗ .04 Q –0.04 .04 –0.03 .07
H 0.11∗∗∗ .03 0.08 .06 R –0.17∗∗∗ .03 –0.06 .08
I –0.02 .04 –0.05 .07 S 0.00 .04 0.02 .05
J –0.15∗∗∗ .03 –0.16∗∗ .06

∆3: Mean change in log 25-year return value (1970 to 1999) for

CCSM, by kriging

SE3: Corresponding standard error (or RMSPE)

∆4, SE4: Results using GWA

Stars indicate significance at 5%∗, 1%∗∗, 0.1%∗∗∗.
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RETURN VALUE MAPS FOR INDIVIDUAL DECADES
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Map of 25-year return values (cm.) for the years 1950–1959
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Map of 25-year return values (cm.) for the years 1960–1969
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Map of 25-year return values (cm.) for the years 1970–1979
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Map of 25-year return values (cm.) for the years 1980–1989
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Map of 25-year return values (cm.) for the years 1990–1999
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Estimated ratios of 25-year return values for 1990s compared

with average at each location over 1950–1989
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Regional changes in log RV25 for each decade compared with

1950s
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CONCLUSIONS

1. Focus on N-year return values — strong historical tradition
for this measure of extremes (we took N = 25 here)

2. Seasonal variation of extreme value parameters is a critical
feature of this analysis

3. Overall significant increase over 1970–1999 except for parts
of western states — average increase across continental US
is 7%

4. Kriging better than GWA

5. But... based on CCSM data there is a completely different
spatial pattern and no overall increase

6. Projections to 2070–2099 show further strong increases but
note caveat based on point 5

7. Decadal variations since 1950s show strongest increases dur-
ing 1990s.
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VII. MULTIVARIATE EXTREMES
AND MAX-STABLE PROCESSES

VII.1 Limit theory for multivariate sample maxima

VII.2 Alternative formulations of multivariate extreme value the-

ory

VII.3 Max-stable processes
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Multivariate extreme value theory applies when we are interested

in the joint distribution of extremes from several random vari-

ables.

Examples:

• Winds and waves on an offshore structure

• Meteorological variables, e.g. temperature and precipitation

• Air pollution variables, e.g. ozone and sulfur dioxide

• Finance, e.g. price changes in several stocks or indices

• Spatial extremes, e.g. joint distributions of extreme precipi-

tation at several locations
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VII.1 LIMIT THEOREMS FOR MULTIVARIATE

SAMPLE MAXIMA

Let Yi = (Yi1...YiD)T be i.i.d. D-dimensional vectors, i = 1,2, ...

Mnd = max{Y1d, ..., Ynd}(1 ≤ d ≤ D) — d’th-component maxi-

mum

Look for constants and, bnd such that

Pr

{
Mnd − bnd

and
≤ xd, d = 1, ..., D

}
→ G(x1, ..., xD).

Vector notation:

Pr

{
Mn − bn

an
≤ x

}
→ G(x).
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Two general points:

1. If G is a multivariate extreme value distribution, then each

of its marginal distributions must be one of the univariate

extreme value distributions, and therefore can be represented

in GEV form

2. The form of the limiting distribution is invariant under mono-

tonic transformation of each component. Therefore, without

loss of generality we can transform each marginal distribu-

tion into a specified form. For most of our applications, it is

convenient to assume the Fréchet form:

Pr{Xd ≤ x} = exp(−x−α), x > 0, d = 1, ..., D.

Here α > 0. The case α = 1 is called unit Fréchet.
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Representations of Limit Distributions

Any MEVD with unit Fréchet margins may be written as

G(x) = exp {−V (x)} , (1)

V (x) =
∫
SD

max
d=1,...,D

(
wj

xj

)
dH(w), (2)

where SD = {(x1, ..., xD) : x1 ≥ 0, ..., xD ≥ 0, x1 + ... + xD = 1}
and H is a measure on SD.

The function V (x) is called the exponent measure and formula
(2) is the Pickands representation. If we fix d′ ∈ {1, ..., D} with
0 < xd′ <∞, and define xd = +∞ for d 6= d′, then

V (x) =
∫
SD

max
d=1,...,D

(
wd
xd

)
dH(w) =

1

xd′

∫
SD

wd′dH(w)

so to ensure correct marginal distributions we must have∫
SD

wddH(w) = 1, d = 1, ..., D. (3)
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Note that

kV (x) = V

(
x

k

)
(which is in fact another characterization of V ) so

Gk(x) = exp(−kV (x))

= exp
(
−V

(
x

k

))
= G

(
x

k

)
.

Hence G is max-stable. In particular, if X1, ...,Xk are i.i.d. from

G, then max{X1, ...,Xk} (vector of componentwise maxima) has

the same distribution as kX1.
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The Pickands Dependence Function

In the two-dimensional case (with unit Fréchet margins) there is

an alternative representation due to Pickands:

Pr{X1 ≤ x1, X2 ≤ x2} = exp

{
−
(

1

x1
+

1

x2

)
A

(
x1

x1 + x2

)}
where A is a convex function on [0,1] such that A(0) = A(1) =

1, 1
2 ≤ A

(
1
2

)
≤ 1.

The value of A
(

1
2

)
is often taken as a measure of the strength of

dependence: A
(

1
2

)
= 1

2 is “perfect dependence” while A
(

1
2

)
= 1

is independence.
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VII.1.a EXAMPLES
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Logistic (Gumbel and Goldstein, 1964)

V (x) =

 D∑
d=1

x−rd

1/r

, r ≥ 1.

Check:

1. V (x/k) = kV (x)

2. V ((+∞,+∞, ..., xd, ...,+∞,+∞) = x−1
d

3. e−V (x) is a valid c.d.f.

Limiting cases:

• r = 1: independent components

• r → ∞: the limiting case when Xi1 = Xi2 = ... = XiD with
probability 1.

121



Asymmetric logistic (Tawn 1990)

V (x) =
∑
c∈C

∑
i∈c

(
θi,c

xi

)rc
1/rc

,

where C is the class of non-empty subsets of {1, ..., D}, rc ≥
1, θi,c = 0 if i /∈ c, θi,c ≥ 0,

∑
c∈C θi,c = 1 for each i.

Negative logistic (Joe 1990)

V (x) =
∑ 1

xj
+

∑
c∈C: |c|≥2

(−1)|c|
∑
i∈c

(
θi,c

xi

)rc
1/rc

,

rc ≤ 0, θi,c = 0 if i /∈ c, θi,c ≥ 0,
∑
c∈C(−1)|c|θi,c ≤ 1 for each i.
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Tilted Dirichlet (Coles and Tawn 1991)

A general construction: Suppose h∗ is an arbitrary positive func-
tion on Sd with md =

∫
SD udh

∗(u)du <∞, then define

h(w) = (
∑

mkwk)−(D+1)
D∏
d=1

mdh
∗
(
m1w1∑
mkwk

, ...,
mDwD∑
mkwk

)
.

h is density of positive measure H,
∫
SD uddH(u) = 1 each d.

As a special case of this, they considered Dirichlet density

h∗(u) =
Γ(
∑
αj)∏

dΓ(αd)

D∏
d=1

u
αd−1
d .

Leads to

h(w) =
D∏
d=1

αd
Γ(αd)

·
Γ(
∑
αd + 1)

(
∑
αdwd)D+1

D∏
d=1

(
αdwd∑
αkwk

)αd−1

.

Disadvantage: need for numerical integration
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VII.1.b ESTIMATION

• Parametric

• Non/semi-parametric

Both approaches have problems, e.g. nonregular behavior of

MLE even in finite-parameter problems; curse of dimensionality

if D large.

Typically proceed by transforming margins to unit Fréchet first,

though there are advantages in joint estimation of marginal dis-

tributions and dependence structure (Shi 1995)
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VII.2 ALTERNATIVE FORMULATIONS OF

MULTIVARIATE EXTREMES
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• Ledford-Tawn-Ramos approach

• Heffernan-Tawn approach
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The first paper to suggest that multivariate extreme value theory
(as defined so far) might not be general enough was Ledford and
Tawn (1996).

Suppose (Z1, Z2) are a bivariate random vector with unit Fréchet
margins. Traditional cases lead to

Pr{Z1 > r, Z2 > r} ∼
{

const.× r−1 dependent cases

const.× r−2 exact independent

The first case covers all bivariate extreme value distributions ex-
cept the independent case. However, Ledford and Tawn showed
by example that for a number of cases of practical interest,

Pr{Z1 > r, Z2 > r} ∼ L(r)r−1/η,

where L is a slowly varying function (L(rx)
L(r) → 1 as r → ∞) and

η ∈ (0,1].

Estimation: used fact that 1/η is Pareto index for min(Z1, Z2).
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More general case (Ledford and Tawn 1997):

Pr{Z1 > z1, Z2 > z2, } = L(z1, z2)z−c11 z
−c2
2 ,

0 < η ≤ 1; c1 + c2 = 1
η ; L slowly varying in sense that

g(z1, z2) = lim
t→∞

L(tz1, tz2)

L(t, t)
.

They showed g(z1, z2) = g∗
(

z1
z1+z2

)
but were unable to estimate

g∗ directly — needed to make parametric assumptions about this.

More recently, Resnick and co-authors were able to make a more

rigorous mathematical theory using concept of hidden regular

variation (see e.g. Resnick 2002, Maulik and Resnick 2005,

Heffernan and Resnick 2005; see also Section 9.4 of Resnick

(2007)).
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Ramos-Ledford (2009, 2008) approach:

Pr{Z1 > z1, Z2 > z2, } = L̃(z1, z2)(z1z2)−1/(2η),

lim
u→∞

L̃(ux1, ux2)

L̃(u, u)
= g(x1, x2)

= g∗

(
x1

x1 + x2

)

Limiting joint survivor function

Pr{X1 > x1, X2 > x2} =
∫ 1

0
η

{
min

(
w

x1
,
1− w
x2

)}1/η

dH∗η(w),

1 = η
∫ 1

0
{min (w,1− w)}1/η dH∗η(w).
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Multivariate generalization to D > 2:

Pr{X1 > x1, ..., XD > xD} =
∫
SD

η

{
min

1≤d≤D

(
wd
xd

)}1/η

dH∗η(w),

1 =
∫
SD

η

{
min

1≤d≤D
wj

}1/η

dH∗η(w).

Open problems:

• How to find sufficiently rich classes of H∗η(w) to derive para-
metric families suitable for real data

• How to do the subsequent estimation
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The Heffernan-Tawn approach

Reference:

A conditional approach for multivariate extreme values, by Janet

Heffernan and Jonathan Tawn, J.R. Statist. Soc. B 66, 497–

546 (with discussion)
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A set C ∈ Rd is an “extreme set” if

• we can partition C = ∪di=1Ci where

Ci = C ∩
{
x ∈ Rd : FXi(xi) > FXj(xj)

}
for all i 6= j

(Ci is the set on which Xi is “most extreme” among X1, ..., Xd,
extremeness being measured by marginal tail probabilities)

• The set Ci satisfies the following property: there exists a vXi
such that

X ∈ Ci if and only if X ∈ Ci and Xi > vXi.

(or: if X = (X1, ..., Xd) ∈ Ci then so is any other X for which
Xi is more extreme)

The objective of the paper is to propose a general methodology
for estimating probabilities of extreme sets.
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Marginal distributions

• Standard “GPD” model fit: define a threshold uXi and as-
sume

Pr{Xi > uXi + x | Xi > uXi} =

(
1 + ξi

x

βi

)−1/ξi

+

for x > 0.

• Also estimate FXi(x) by empirical CDF for x < uXi.

• Combine together for an estimate F̂Xi(x) across the entire
range of x.

• Apply componentwise probability integral transform — Yi =
− log[− log{F̂Xi(Xi)}] to have approximately Gumbel margins
(i.e. Pr{Yi ≤ yi} ≈ exp(−e−y)).

• Henceforth assume marginal distributions are exactly Gumbel
and concentrate on dependence among Y1, ..., Yd.
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Existing techniques

Most existing extreme value methods with Gumbel margins re-

duce to

Pr{Y ∈ t+A} ≈ e−t/ηY Pr{Y ∈ A}

for some ηY ∈ (0,1]. Ledford-Tawn classification:

• ηY = 1 is asymptotic dependence (includes all conventional

multivariate extreme value distributions)

• 1
d < ηY < 1 — positive extremal dependence

• 0 < ηY < 1
d — negative extremal dependence

• ηY = 1
d — near extremal independence

Disadvantage: doesn’t work for extreme sets that are not simul-

taneously extreme in all components
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The key assumption of Heffernan-Tawn

Define Y−i to be the vector Y with i’th component omitted.

We assume that for each yi, there exist vectors of normalizing

constants a|i(yi) and b|i(yi) and a limiting (d − 1)-dimensional

CDF G|i such that

lim
yi→∞

Pr{Y−i ≤ a|i(yi) + b|i(yi)z|i} = G|i(z|i). (4)

Put another way: as ui →∞ the variables Yi − ui and

Z−i =
Y−i − a|i(Yi)

b|i(Yi)

are asymptotically independent, with distributions unit exponen-

tial and G|i(z|i).
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Examples in case d = 2

Distribution η a(y) b(y)
Perfect pos. dependence 1 y 1
Bivariate EVD 1 y 1

Bivariate normal, ρ > 0 1+ρ
2 ρ2y y1/2

Inverted logistic, α ∈ (0,1] 2−α 0 y1−α

Independent 1
2 0 1

Morganstern 1
2 0 1

Bivariate normal, ρ < 0 1+ρ
2 − log(ρ2y) y−1/2

Perfect neg. dependence 0 − log(y) 1

Key observation: in all cases b(y) = yb for some b and a(y) is

either 0 or a linear function of y or − log y (for more precise

conditions see equation (3.8) of the paper)
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The results so far suggest the conditional dependence model

(Section 4.1) where we assume the asymptotic relationships con-

ditional on Yi = yi are exact above a given threshold uYi, or in

other words

Pr{Y−i < a|i(yi) + b|i(yi)z|i | Yi = yi} = G|i(z|i), yi > uYi.

Here a|i(yi) and b|i(yi) are assumed to be parametrically depen-

dent on yi through one of the alternative forms given by (3.8),

and G|i(z|i) is estimated nonparametrically from the empirical

distribution of the standardized variables

Ẑ−i =
Y−i − â|i(yi)

b̂|i(yi)
for Yi = yi > uYi.

N.B. The threshold uYi does not have to correspond to the

threshold uXi used for estimating the marginal GPDs.
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Some issues raised by this representation:

• Self-consistency of separate conditional models? (Section

4.2)

• Extrapolation — critical to have parametric forms for a|i(yi)
and b|i(yi) (Section 4.3)

• Diagnostics — combine standard diagnostics for marginal

extremes with tests of independence of Z−i and Yi. Also test

whether the separate components of Z−i are independent,

since estimation via empirical distribution is much simpler in

this case.
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Inference

1. Estimation of marginal parameters

If ψ denotes the collection of all (βi, ξi) parameters for the indi-
vidual GPDs, maximize

logL(ψ) =
d∑

i=1

nuXi∑
k=1

log f̂Xi(xi|i,k)

Here nuXi
is the number of threshold exceedances in the i’th

component and f̂Xi(xi|i,k) is the GP density evaluated at the
k’th exceedance.

[In essence, if there is no functional dependence among the
(βi, ξi) for different i then this is just the usual marginal estima-
tion of the GPD in each component. But if there is functional
dependence, we estimate the parameters jointly by combining the
individual likelihood estimation equations, ignoring dependence
among the components.]

139



2. Single conditional

i.e. How do we estimate a|i(yi) and b|i(yi) for a single i, assuming
parametric representation?

The problem: don’t know the distribution of Z|i.

The solution: do it as if the Z|i were Gaussian with known means
µµµ|i and standard deviations σσσ|i

This leads to the formulae

µµµ|i(y) = a|i(y) + µµµ|ib|i(y),

σσσ|i(y) = σσσ|ib|i(y),

and estimating equation

Qi = −
∑
j 6=i

nuYi∑
k=1

logσj|i(yi|i,k) +
1

2

yj|i,k − µj|i(yi|i,k)

σj|i(yi|i,k)


2
 .
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3. All conditionals

To estimate all a|i(yi) and b|i(yi) jointly maximize

Q =
d∑

i=1

Qi.

Analogous with pseudolikelihood estimation (Besag 1975)
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4. Uncertainty

Bootstrap.....
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Air quality application

The data: daily values of five air pollutants (O3, NO2, NO, SO2,

PM10) in Leeds, U.K., during 1994–1998.

Two seasons: winter (NDJF), early summer (AMJJ)

Omit values around November 5 and some clear outliers

Marginal model: fit GPD above a (somewhat) high threshold,

estimate 99% quantile with standard error (Table 4)
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144



Dependence model

Transform margins to Gumbel, select threshold for dependence
modeling. Selected to be 70% quantile (for all five variables)

Estimate (aj|i, bj|i) and (ai|j, bi|j) for each combination of i 6=
j, with sampling variability represented by convex hull of 100
bootstrap simulations (Fig. 5).

Several pairs do not exhibit weak pairwise exchangeability (e.g.
PM10, O3 in summer)

Components of Z|i are typically dependent

Some pairs exhibit negative dependence (e.g. O3, NO in winter
— consistent with chemical reactions)

Fig. 6 shows pseudosamples of other variables given NO over
threshold (C5(23) are points for which sum of all 5 variables on
Gumbel scale exceeds 23)
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Estimation of critical functionals

Contrast “joint probability” with “structure variable” approach

(Coles and Tawn 1994)

(a) Estimate conditional mean of each other variable given that

NO is about 95% or 99% threshold (Table 5)

(b) Sums of variables on Gumbel scale, e.g. for a subset M ⊆
{1, ..., d} with |M| = m, define Cm(v) = {y :

∑
i∈M yi > v}; define

p-quantile vp by property Pr{Y ∈ C(vp)} = p.

Compute return-level estimates for Cm(v) with M corresponding

to (O3,NO2) and (NO2,SO2,PM10) (Fig. 7)
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Further work on the Heffernan-Tawn model

See in particular

J.E. Heffernan and S.I. Resnick (2007), Limit laws for random

vectors with an extreme component. Annals of Applied Proba-

bility 17, 537–571

for a detailed analysis of the probability theory underlying the

Heffernan-Tawn method. This should eventually lead to new

statistical methods, though that has still to be done!
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VII.3 MAX-STABLE PROCESSES
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A stochastic process {Zt, t ∈ T}, where T is an arbitrary index

set, is called max-stable if there exist constants ANt > 0, BNt
(for N ≥ 1, t ∈ T ) with the following property: if Z(1)

t , ..., Z
(N)
t

are N independent copies of the process and

Z∗t =

(
max

1≤n≤N
Z

(n)
t −BNt

)
/ANt, t ∈ T,

then {Z∗t , t ∈ T} is identical in law to {Zt, t ∈ T}.

WLOG, assume margins are Unit Fréchet,

Pr{Zt ≤ z} = e−1/z, for all t (5)

in which case ANt = N, BNt = 0. Note that even though this

assumption may be made for the purpose of characterizing the

stochastic process, we would still have to estimate the marginal

distributions in practice.
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Construction of Max-Stable Processes

Let {(ξi, si), i ≥ 1} denote the points of a Poisson process on
(0,∞) × S with intensity measure ξ−2dξ × ν(ds), where S is an
arbitrary measurable set and ν a positive measure on S. Let
{f(s, t), s ∈ S, t ∈ T} denote a non-negative function for which∫

S
f(s, t)ν(ds) = 1, for all t ∈ T (6)

and define

Zt = max
i
{ξif(si, t)}, t ∈ T. (7)

“Rainfall-storms” interpretation: S is space of “storm centres”,
ν as a measure representing distribution of storms over S. Each
ξi represents the magnitude of a storm, and ξif(si, t) represents
the amount of rainfall at position t from a storm of size ξi centred
at si; the function f represents the “shape” of the storm. The
max operation in (7) represents the notion that the observed
maximum rainfall Zt is a maximum over independent storms.
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Fix zt > 0 for each t, and consider the set

B = {(ξ, s) : ξf(s, t) > zt for at least one t ∈ T}.

The event {Zt ≤ zt for all t} occurs if and only if no points of
the Poisson process lie in B. However, the Poisson measure of
the set B is∫

S

∫ ∞
0

I

{
ξ > min

zt

(f(s, t)

}
ξ−2dξ ν(ds) =

∫
S

max
t

{
f(s, t)

zt

}
ν(ds)

where I is the indicator function, and consequently

Pr{Zt ≤ zt for all t} = exp

[
−
∫
S

max
t

{
f(s, t)

zt

}
ν(ds)

]
. (8)

It follows from (8) and (6) that the marginal distribution of Zt,
for any fixed t, is of Fréchet form (5), and by direct verification
from (8), the process is max-stable.
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Examples (Smith 1990)

Multivariate normal form:

Suppose S = T = <d, ν is Lebesgue measure, and

f(s, t) = f0(s− t) = (2π)−d/2|Σ|−1 exp
{
−

1

2
(s− t)TΣ−1(s− t)

}
.

Formula for Pr{Yt1 ≤ y1, Yt2 ≤ y2} is

exp

{
−

1

y1
Φ

(
a

2
+

1

a
log

y2

y1

)
−

1

y2
Φ

(
a

2
+

1

a
log

y1

y2

)}
where Φ is the standard normal distribution function and

a2 = (t1 − t2)TΣ−1(t1 − t2).
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Pickands dependence function:

A(w) = (1− w)Φ
(
a

2
+

1

a
log

1− w
w

)
+ wΦ

(
a

2
+

1

a
log

w

1− w

)
.

Limits a → 0 and a → ∞ become the extreme cases A(w) =

max(w,1 − w) and A(w) = 1 representing, respectively, perfect

dependence and independence.

Note that A
(

1
2

)
= Φ

(
a
2

)
.

Remark. This dependence function was independently derived

by Hüsler and Reiss (1989) as a limiting form for the joint distri-

bution of bivariate extremes from a bivariate normal distribution

with correlation ρn varying with sample size n, in such a way

that n→∞, ρn → 1 and (1− ρn) logn→ a2/4. They also gave a

multivariate extension.
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Multivariate t form:

f0(x) = |Σ|−1/2(πv)−d/2 Γ(v/2)

Γ((v − d)/2)

(
1 +

xTΣ−1x

v

)−v/2

,

valid for all x ∈ <d, where Σ is again a positive definite covariance
matrix and v > d.

No general formula for even the bivariate joint distributions, but
we do have

A

(
1

2

)
=

1

2

{
1 +B

(
a2

a2 + 4v2
;

1

2
,
v − d

2

)}
,

where a =
√

(t1 − t2)TΣ−1(t1 − t2) again and B is the incomplete
beta function,

B(y;α, β) =
Γ(α+ β)

Γ(α)Γ(β)

∫ y
0
uα−1(1− u)β−1du, 0 ≤ y ≤ 1.

Note that, as v →∞, A(1/2)→ Φ(a/2) which is consistent with
the MVN case.
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Representations of Max-Stable Processes

The representation (8) first appeared in a number of papers

in the 1980s, such as de Haan (1984), de Haan and Pickands

(1986), Giné, Hahn and Vatan (1990).

However it is not the most general representation, as shown in

particular by Schlather (2002).
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Schlather’s First Representation

Let Y be a measurable random function on <d,
µ = E

{∫
<d max(0, Y (x))dx

}
∈ (0,∞), Π a point process on <d ×

(0,∞) with intensity measure dΛ(y, ξ) = µ−1dyξ−2dξ,

Z(x) = sup
(ξ,y)∈Π

ξYy,ξ(x− y),

where each Yy,ξ(·) is an independent copy of Y .

Then Z is max-stable with unit Fréchet margins.
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Schlather’s Second Representation

Let Y be a stationary process on <d,
µ = E {max(0, Y (x))} ∈ (0,∞), Π a point process on (0,∞) with

intensity measure µ−1ξ−2dξ,

Z(x) = max
ξ∈Π

ξYξ(x) = max
ξ∈Π

max{0, ξYξ(x)},

where each Yξ(·) is an independent copy of Y .

Then Z is max-stable with unit Fréchet margins.
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Example:

Suppose Y is a stationary standard normal random field with

correlation function ρ(t). Let Π be a Poisson process on (0,∞)

with intensity measure dΛ(ξ) =
√

2πξ−2dξ. Then the process

Z(s) = maxξ∈Π max{0, ξYξ(s)} defines an extremal Gaussian pro-

cess. Its bivariate distributions satisfy

Pr{Z(s1) ≤ x1, Z(s2) ≤ x2}

= exp

{
−

1

2

(
1

x1
+

1

x2

)(
1 +

√
1− 2(ρ(s1 − s2)− 1)

x1x2

(x1 + x2)2

)}
,

Another new class of bivariate EVDs!
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Statistical Methods

Smith (1990)

Coles (1993)

Coles and Tawn (1996)

Buishand, de Haan and Zhou (2008)

Naveau, Guillou, Cooley and Diebolt (2009)
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Method of Smith (1990)

Define the extremal coefficient between two variables: if X1 and

X2 have same marginal cdf F (·),

Pr{X1 ≤ x, X2 ≤ x} = F θ(x).

In BEVD case, θ = 2A
(

1
2

)
.

Remark. Various people have proposed the extension where

F θ(x) is replaced by F θ(x)(x), θ(x) depending on the level x.

In some contexts, this could be equivalent to the Ledford-Tawn

representation.
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Smith proposed estimating the extremal coefficient between each

pair of sites, θ̃ij say, with standard error sij. Also, for the models

considered so far there is a theoretical expression for θij in terms

of the parameters of the process. So we can use a nonlinear sum

of squares criterion

Minimize S =
∑
i,j

(
θ̃ij − θ̂ij
sij

)2

to determine the optimal θ̂ij as a parametric function of the

max-stable process.
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Coles (1993)

1. Rewrite model as

Z(t) = max
i
{Xif(Si, t)} , Si ∈ S, t ∈ T,

where (Xi, Si) have Poisson measure µ(dx, ds) = x−2dxν(ds)

on (0,∞)× S (N.B. S and T don’t have to coincide!)

2. Use all storm profiles rather than just pointwise maxima

3. Define a subset of stations T1 ⊂ T with |T1| = p and identify

S with Sp, the p-dimensional simplex

4. Let ν be the estimated H-measure on T1 and f(w, tj) = wj
for w ∈ Sp, tj ∈ T1

5. Extend f(w, t) to all t ∈ T .
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Coles and Tawn (1996)

Objective: calculate extremal distributions of areal averages based
on point rainfall data

Method:

1. Focus on i’th rain event with precipitation Xi(v), v ∈ V

2. Unit Fréchet Transformation Ψv(Xi(v)) = X̃i(v) after fitting
(mu(v), ψ(v), ξ(v)) GEV model to each site v

3. Write X̃i(v) = ξif(si, v) using point process representation of
Coles (1993), fitted to storms for which at least one Xi(v)
exceeded some high threshold

4. Area average

Yi =
1

∆V

∫
V

Ψ−1
v (ξif(si, v))dv.
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Naveau, Guillou, Cooley and Diebolt (2009)

Define madogram: if M(x), x ∈ X is a stationary process of

pointwise maxima over some space X, with marginal cdf F , then

ν(h) =
1

2
E {|F (M(x+ h))− F (M(x))|} .

In particular, the extremal coefficient between two sites x and

x+ h is 1+2ν(h)
1−2ν(h) .

Disadvantage: only relevant to joint probabilities Pr{M(x) ≤
u, M(x+ h) ≤ v} in cases u = v.
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The λ-madogram:

ν(h, λ) =
1

2
E
{∣∣∣Fλ(M(x+ h))− F1−λ(M(x))

∣∣∣} .
Then the exponent measure V is

V (λ,1− λ) =
c(λ) + ν(h, λ)

1− c(λ)− ν(h, λ)
,

where c(λ) = 3/{2(1 + λ)(2− λ)}, λ ∈ (0,1).

If we assume the marginal cdf is known, then the estimator of

ν(h, λ) is obvious. The main focus of the paper of Naveau et

al. (2009) is to estimate ν(h, λ) when the marginal distribu-

tion is unknown. They do this nonparametrically using empirical

process theory. This is an alternative to the Smith-Tawn-Coles

method of estimating the distribution above a high threshold via

GEV/GPD approximations.
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Buishand, de Haan and Zhou (2008)

This will be Zhitao Zhang’s class presentation. Therefore, I omit

any discussion here, except to say that it is closely related to the

methods of the previous papers.
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Other (recent) books on extremes

1. Coles (2001)

Best overall introduction to the whole subject

2. Finkenstadt and Rootzén (editors) (2003)

Proceedings of European conference: includes RLS overview

chapter, and Fougères on multivariate extremes

3. Beirlant, Goegebeur, Segers and Teugels (2004)

Comprehensive overview of traditional extreme value theory,

including multivariate extremes

4. De Haan and Ferreira (2006)

Particular focus on max-stable ideas

5. Resnick (2007)

Different focus: focus on probability models but including

relevant statistics
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